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When a wave, such as sound or light, scatters
within a densely packed particulate, it can be
rescattered many times between the particles, which
is called multiple scattering. Multiple scattering
can be unavoidable when trying to use sound
waves to measure a dense particulate, such as a
composite with reinforcing fibres. Here, we solve
from first principles multiple scattering of scalar
waves, including acoustic, for any frequency from
a set of two-dimensional particles confined in a
circular area. This case has not been solved yet,
and its solution is important to perform numerical
validation, as particles within a cylinder require
only a finite number of particles to perform direct
numerical simulations. The method we use involves
ensemble averaging over particle configurations,
which leads us to deduce an effective T-matrix for the
whole cylinder, which can be used to easily describe
the scattering from any incident wave. In the specific
case when the particles are monopole scatterers, the
expression of this effective T-matrix simplifies and
reduces to the T-matrix of a homogeneous cylinder
with an effective wavenumber k,. To validate our
theoretical predictions, we develop an efficient Monte
Carlo method and conclude that our theoretical
predictions are highly accurate for a broad range of
frequencies.

1. Introduction

(a) Ensemble averaging

Multiple scattering is unavoidable when using waves
to characterize a particulate composite, or designing
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metamaterials to control wave propagation. Furthermore, the number of particles in most
applications makes direct numerical simulations impossible for current computing power,
though there are some notable attempts [1,2]. Even if such simulations were possible, when
it comes to experimental measurements, the positions of the particles are impossible to know
for one particular sample. One way to avoid these problems is to use ensemble averaging.
That is, to take an average over all possible particle positions. In light or acoustic experiments
conducted for fluids and gases, this type of averaging occurs naturally when averaging over
time as the particles are rapidly moving around. That is, taking an average of the scattered
signal over time can be equivalent to an ensemble average.! Assuming that ensemble averaging
is equivalent to averaging over time and space, which is often the case, is called the ergodicity
assumption [3]. Refer to [4-6] for work that compares the ensemble-averaged field approach
with the cases of one specific configuration of particles.

(b) What is known

The scenarios that are best understood are (i) waves in an infinite medium with no boundaries
[7,8] and (ii) plane waves incident on a half-space or plate filled with particles [6,9,10]. Both
scenarios have been considered to obtain effective wavenumbers [11-13]. Though we mention
the methods that use Lippmann-Schwinger for acoustics, they involve an extra integral that
is often omitted [14] and complicates the calculations. Our approach in this article is valid for
any type of scatterer and scalar waves. Both scenarios of using plane waves and an infinite
medium have several applications (typically when considering layered media such as planetary
atmospheres, layers in the ocean or soils), but one significant drawback is that it has been
very challenging to numerically validate the assumptions used for these methods. Both use
statistical assumptions, such as the quasi-crystalline approximation (QCA) [15] that is not based
on an asymptotic approximation. Validation is needed to establish the range of validity of
these assumptions. However, direct numerical simulations of scattering from a configuration of
particles for both planes and infinite media require a huge number of particles [16,17] or the
introduction of periodic boundaries, which can introduce artefacts [18].

(c) The cylindrical setting

The methods developed to describe the average plane wave propagating in a disordered
particulate plate or half-space can now be extended to other geometries [19]. The ideal scenario
to compare theoretical predictions with direct numerical simulations is to have cylindrical
particles inside a cylinder, as this reduces the problem to two dimensions and we need
only a finite number of particles for the direct numerical simulations. See figure 1 for an
illustration. This is the simplest case to perform numerical validation of a very general theory
[19]. Furthermore, we show in this work that the effective dispersion equation for the cylindri-
cal geometry is the same as the plane-wave case. So numerically validating the cylindrical
geometry will also serve as numerical validation of the dispersion equation for plane waves and
all geometries. We also note that it appears that the cylindrical setting has never been solved
from a first principles approach. The formulas we provide are also valid for any inter-particle
pair correlation. For a radiative transfer model of this setting, see [20].

'In ergodic systems, if enough time has passed, all physically possible states of the system will have occurred, and so that
taking an average over time is equivalent to averaging over all possible configurations.
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Figure 1. Consider a circular region filled with sound-hard particles, illuminated with a modal source of the form
Ui = Vy(r) as defined in equation (2.3), with N = 0 (left panel) or N = 3 (right panel). Both panels compare the average
scattered wave (u,.) predicted by our effective wave method (EWM) with a brute force Monte Carlo (MC) approach. The MC
approach simulates the scattered field from either 1, M = 1, or 200, M = 200, configurations of particles and then takes the
average over these configurations. In general, the average scattered wave is given by equation (2.15). The left panel shows
that when using an incident wave u,. = Vo(r), with radial symmetry, then the only scattered mode also has radial symmetry

after averaging. The right panel shows how a source with a 60° rotation symmetry also leads to a scattered wave with the
same symmetry.

(d) Industrial applications

Beyond numerical validation, there are industrial applications that need a method to calculate
waves scattered from a cylinder with particles. Examples of cylinders filled with cylindrical
particles include concrete beams reinforced with iron, cables filled with wires or fibre-rein-
forced composite [21]. Applications include designing cylinders with exotic effective properties
or developing methods to measure the cylindrical particles [22,23]. In terms of measurement, it
is likely that more information can be extracted from waves scattered from a cylinder filled with
a particulate than just plane wave reflection from a plate filled with the same particulate.

(e) Effective properties

The most common approach to model the average scattering from, say, a spherical or cylindrical
region with particles is to assume the region is homogeneous with some effective properties
[24-30], and then use the standard boundary conditions such as continuity of displacement.
This approach is valid for low frequency [28] but for higher frequencies is incorrect in three
dimensions [19], and we demonstrate the same here for two dimensions in this work. To
obtain an accurate model for broad-range frequencies, the boundary condition needs to be
deduced from first principles, together with an eigensystem for the effective wavenumbers [19].
Although the process is more involved, the final expression for the average scattered wave from
a cylindrical region is simple: the average scattered wave can be calculated from an effective
T-matrix for any incident frequency, source and particle properties. We stress that without
deducing the results from first principles, as we do here, it would not be possible to just guess
the form of this effective T-matrix.
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(f) Monopole scatterers

One somewhat surprising result we deduce is that if the particles scatter only monopole waves,
that is, waves that have radial symmetry, then the material as a whole behaves as homogeneous,
where the mass density is the same as the background, and the bulk density is given by a
simple formula. We deduce this for particles in a cylinder and hypothesize that it is true for any
material filled with monopole scatterers, even when including all orders of multiple scattering.
Beyond just curiosity, there are many particles that behave approximately like a monopole
scatterer, and therefore the simple formulas we deduced are appropriate. For example, in
acoustics void-like, particles are approximately monopoles for a broad frequency range, see the
Dirichlet case in figure 2. In elasticity, particles become approximately monopole when the bulk
modulus is much greater than the shear modulus [31]. Other cases include resonators such as a
split ring resonator [32].

(g) Overview of the method

After ensemble averaging over particle configurations within a cylindrical region, the system
inherits cylindrical symmetry. For example, if the source has radial symmetry, then the average
scattered field will also have radial symmetry. This is also true for sources with more general
rotational symmetry resulting in scattered fields of the same rotational symmetry (cf. figure
1). In this article, we take advantage of this mode-to-mode symmetry to analyse the general
behaviour of the random particulate material independently from the incident field.

After denoting with V,, and U, the regular and outgoing cylindrical waves of order n (cf.
equation (2.3)), the cylindrical symmetry translates as follows: when the exciting source is V,,
then the average scattered field is T,U,, where the complex number T, only depends on the
properties of the random particulate cylinder (radius and properties of the particles). Since the
scattering problem is linear, the knowledge of the T, allows us to describe the scattering from
any incident field, after decomposing the latter into the modes V,. Having simple expressions
for T, is crucial to help guide methods to characterize or design particulate materials. We do so
by using the effective wave method (EWM) approach [19]. Finally, we validate our results with
an adapted Monte Carlo (MC) method in which the rate of convergence is accelerated thanks to
the cylindrical symmetry.

(h) Overview of this article

In §2, we first introduce the statistics of the random particulate material and the required
notations for the ensemble averaging. We then define the T-matrix of the effective cylinder
whose exact formula depends on the solutions of the averaged Foldy-Lax equations.

The latter are solved in §3 using the EWM, which consists of finding solutions that are
isotropic waves with a complex wavenumber k,. The method leads to an eigenvalue problem
called the dispersion equation, whose eigenvalue provides k.

In §4, we use the expression of the solutions of the averaged Foldy-Lax equations to deduce
a formula of the effective T-matrix. The latter is very simple when the particles are monopole
scatterers:

S . Cn = KIn(kR)Ju(kaR) = kuJu(kR)Th(ksR)
= - with ~ ~ ~ ~ 7
Dn Dy = KH(KR)Ju(kaR) = Ky Ha(kR)J (k4 R) (1.1)

where R is the radius of the region enclosing the centres of the particles and k is the wave-
number of the background medium. This result is remarkable because the above expression

corresponds to the T-matrix of a homogeneous acoustic cylinder of radius R, sound speed
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Figure 2. Comparison of various methods to calculate the component Ty of the T-matrix of a cylinder filled with particles.
The solid red line is our effective waves method (EWM) (equation (1.2)), the black points are from a brute force MC method
and the dashed blue line is our method when only monopole scattering is accounted for (EWM-MA) (equation (1.1)). The left
(right) graph shows the results for sound soft (hard) particles. In both cases, the general expression of the effective T-matrix
matches the MC results. The EWM-MA method only matches well with the MC for sound soft scatterers for low frequencies.
Both graphs were generated with a particulate volume fraction of n = 0.05 (portion area occupied by particles of radius
a = Tinside the cylinder of radius R = 20).

¢y = w/k, and density p, which is equal to the background medium. Particles that are approxi-
mately monopole scatterers appear in mainly two scenarios: either small sound soft particles or
resonators [33]. For all these cases, the T-matrix being given by equation (1.1) shows us that the
effective wavenumber k, suffices to describe the random material.

When the particles are not monopole scatterers, equation (1.1) is not exact. The exact formula
is given by

Z Cn-nFu

Ty=—&——,
Zann’Fn’
py

(1.2)

where the ¢, and D, are the same as before, and the weights F, are the eigenfunctions of the
dispersion equation, associated with the effective wavenumber k.

For monopole scatterers, we have that (n' = 0), and the above reduces to equation (1.1). We
note that often F( is the largest term, which explains why equation (1.1) can give accurate
results for non-monopole scatterers, see for example, the numerical results for sound soft
(Dirichlet) particles shown in figure 2 in the low-frequency regime. In this same figure, we also
see how for sound hard particles (Neumann), which intensively scatter dipole moments, the
MC results closely match the formula in equation (1.2), whereas they do not match the formula
of the T-matrix for monopole scatterers.

2. Random particulate material

(a) Deterministic scattering from J particles

Here, we summarize some results for multiple scattering of acoustic waves, in the time-har-
monic regime, by a collection of J circular cylinders, referred to as particles, with axes aligned
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with the z-axis. The centre of the ith particle is identified by r, € R* as shown in figure 3 and is
assumed to be confined in a region denoted by R;. This means that all particles are contained
inside the following set:

R:={reR®: Irl <R}. 1)

The propagation of waves in free space is governed by the two-dimensional Helmholtz
equation.?

Au+ku=0, (2.2)

where A := b,zc + aﬁ is the two-dimensional Laplace operator, and k € R is the wavenumber of the
homogeneous background. Consider the following basis of the solutions of Helmholtz equation
V, and U, defined by

U, (kr) = H,(kr)e"™ Vre R*\ {0}
Vukr) = Ju(kr)e"® vreR? (2.3

where (r, 6) are the polar coordinates of r, i.e. r = (rcos 6, rsin 6), J,, are Bessel functions and H,
are Hankel functions, both of the first kind. The specific solutions V,(kr) have the particularity
of being smooth while U,(kr) have a singularity at the origin and are outgoing solutions.

To analyse acoustic scattering, we follow the same procedure as in [19,34]. Both the incident
field uj,. and the scattered field ug. are solutions of equation (2.2). We assume that u;,. is
smooth and regular in the region that covers the particles’, the scattered field has to be a sum of
outgoing fields from each particle centred at r;, as a result, we can write

)= 3 gVallr), 2.4)
)= 8 fLUkr k). 25)
i=ln=—-c

For a known incident wave, its coefficients, g, € C, can be calculated via Bessel expansion

while the scattering coefficients, f; € C, are unknowns that can be determined by following the
multipole method [35]. The latter leads to the following system of equations:

fh= T;zlvnr_n(kri)g,ﬁﬂ,j; YU nlkri— 1)) fl vnez vi=1..J, (2.6)
n n

where T, is the T-matrix of particle i, which can represent a wide range of particles [36].
To give an example, the expression of a T-matrix of a homogeneous particle with wavenum-
ber k;, density p; and radius g; is given by
pikJn(ka)]n(kia;) — pkil n(ka;)J (ki)

T = = DT (k)] (ki) — pRaE L, (Rap ki) @7

The system of equations (2.6) totally determines the scattering coefficients fﬁl, which allows to
solve the scattering problem from the J given particles. However, this result is not very useful in
practice for two main reasons: first, the position of the particles is often unknown, and second,
there can be a very large number of particles in most industrial applications [37]. The ensemble
average over all particle positions, that we summarize below, solves both these problems from
the computational standpoint.

*Time evolution of the harmonic waves follows the convention Re {u(r)e — iwt }.
*This is true for any source which originated from the region outside of where the particles are placed.
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Set-up of cylindrical particles inside a cylinder

Figure 3. lllustration of a possible configuration of four particles. The particles are cylinders whose axes are aligned with the

z-axis. The position r; € R of the /™ particle is determined by the intersection of its axis with the plane xOy. The particles
are of radius a; and physically contained in a cylinder of radius R. In this specific example, all the particles have the same
radius g; = @, and the centres r; are therefore confined in the same disc R shown in green.

(b) Particulate distribution

(i) Single particle distribution

We describe each particle, say particle i, with two random variables: the random variable r;

whose values are the possible positions of the centre of particle i in space (R?), and the random
variable 4;, which describes all other properties of the particle (radius 4;, density p;, etc.). To set
ideas, we will assume that 4; only describes the radius a; and ranges in the following set:

S=[A7,A", (2.8)

where A (resp. A") is the minimal (resp. maximal) possible particle radius.
The values (in Rz) taken by r; depend on 4;. For example, the values of r; have to be one

radius a; away from the boundary 0:R, which completely contains all particles (cf. figure 3). In
this article, we assume that r; is distributed uniformly over the set R;(4;) defined by

Ri={r € R:dist(r,0R) > a;} . (2.9

This assumption translates to
p(ri | A) = S
L 1 IR

where p(r; | 4;) is the probability distribution of r; conditional to 4;, and |R;| is the area of
R;. Bayes theorem allows to specify the probability distribution p(r; 4;) of the pair of random
variables (r;, 4;) with respect to the probability p(4;) of a single particle i to have properties A;:
A
plr, 2) = pri | A)p() = PO (210)
1
This equation represents the choice of a probability distribution that does not have any

preferential position r; for the single particle i, which means there is no agglomeration owing to
an external force acting on the particles.

H
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(ii) Joint particle distribution

Each particle is described by two random variables (4, r;), i=1,...,J. In general, the particle
positions are correlated, for example, no particles can overlap. The most commonly used term
to describe inter-particle correlation is the pair correlation g, which satisfies (cf. [38, eqn 8.1.2]):

gri, Aury, o) T
IR T TRy T=-17

pryr | A ) = (2.11)

where on the left is the joint law of two-particle positions when their properties are known.

The pair correlation g describes how correlated any two particles are, when the positions
and properties of all other particles are unknown. For example, if g=1 for all values of its
arguments then both r; and r; in the above are independent and uniformly distributed over R;
and R, respectively (in the limit J — ).

Finally, we introduce the density

n(d) = W{ilp(/li) (number of 4; type particles per unit volume). (2.12)

Then we derive the following useful relation:

_prydpr,A) _ . 1) =
P("j, /Ij lr, A;) = W = IRl P(/lj)P(ri, r; | /1;') =

where we used equations (2.10)—(2.12).

T gm), @1

(iii) The pair correlation

In this article, we consider that the particles have a distribution that is isotropic
and homogeneous in space. As a consequence, the pair correlation is of the form
g(r, Ay 1, Aj) = g(lr;—rl, 4, 4;). We assume the pair correlation is of the following form:

O, r<a,
g(r, A, o) = {1+6g(r, 11, Za), a2 <r<bp,
1, r> b, (2.14)

where g(r, 44, 42) =0 when particles overlap, with a1» being the minimum allowed distance
between particles of type 4; and A, (a1 > a; + a). This form of the pair correlation moreover
assumes that at a certain distance by from each other, the particles become uncorrelated, that
is, g(r, &1, A2) = 1 for r > by,. This assumption will lead to analytic simplifications, as well as being
a good approximation for most disordered materials. A typical plot of the pair correlation (see
[39,40]) is illustrated in figure 4.

(c) Definition of the effective T-matrix

The expression of the scattered field in equation (2.5) can be simplified after using Graf’s
addition theorem (equation (A 1),ii) with x = kr and d = —kr;

W)= Y Uk, @.15)
Bu= T Vi knfi. .16)

Note that equations (2.15) and (2.16) are only valid for r > R, nevertheless, this is enough for the
definition of the effective T-matrix below. Taking the ensemble average of the equation above, as
defined in appendix B, leads to
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Radial pair-correlation function
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Figure 4. Typical plot of the pair correlation function. The pair-correlation g(r) is zero for r < ay, because particles cannot
overlap. The local minima (maxima) indicate that there is a distance r from one fixed particle, say at r;, where it is less
(more) likely to find other particles. Finally, assuming g(r) = 1forr > b;, means that a particle at r; becomes uncorrelated
to particles that are further than b;,. All variables are dimensionless so that a;; = 1.

(usc(r))y = i (EUn(kr), lrl <R. (2.17)

Since the scattering problem is linear with respect to the incident field, (&,) depends linearly on
the coefficients g,, of the incident field (cf. definition of the incident field ujnc, equation (2.4)):

+o0

(Fn) = Z T, N8y (effective T-matrix definition). (2.18)
N= -

This relation defines the T-matrix J of the averaged material that connects the modes of the
incident field with the ones of the averaged scattered field. It allows us to describe the scattering
from any incident field, provided the coefficients g, in equation (2.4) are known.

In the specific case when the region where the particles are confined is circular, we have
T, n=0if n# N (cf. appendix E), so that equation (2.17) becomes

(use(r)) = f T,gUnkr),  Irl <R, (2.19)

where T, =T, p..
Computing J, y requires to compute (). From equations (2.15), (B 1) and (B 3), we obtain

(@) = [,000) [ X Vo~ kr)(F ), ) drndd (220)

Here, we used equation (B 7) to substitute (f,,)(r1, 41) = oy, ).
The function (f,)(r1, A1) needs to be determined before we can compute (§,). In appendix B 2,
we show how to obtain the governing equation:

(fudr, a) = Tn(/h)Z Vi —n(kr1)gy (2.21)

£ T W)Y [ 1) [, Un - allrs = ra) £, Ag( 7 =721, Aado) dradid,

where we also used the simpler pair-correlation given by equation (2.14). Note that equation
(2.21) is also valid in the case of non-circular particles, as soon as the probability distribution
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of the orientations of any particle in the (O, x, y) plane is uniform over [0, 2n] and independent
of all other particles (see [19] for a derivation in the three-dimensional case). Intuitively, the
particle averaged over all possible orientations behaves as a circular particle after averaging,
and only the diagonal terms T,(4;) of its non-diagonal T-matrix contribute to the resulting
governing equation.

In the next section, we use the EWM to solve equation (2.21). This method introduced in
[19] proved to be successful in the three-dimensional case and provides a closed formula for
(fw(r1, A1). This in turn allows us to compute (&, given by equation (2.20) and reach an explicit
formula for 7, y by specifying g, = §,, -y in equation (2.18), where ¢ is the Kronecker delta:

5 = 1if n=0
n=10 if n#0. (2.22)

3. The effective wave method

To solve the general governing integral equation (2.21), we use the EWM [19] as summarized
below.

Overview of the EWM

The starting point is to assume that there exists k, € C such that

A+ (f)(r, ) =0, L €S, Irl|<R. 3.1

This assumption will greatly simplify the governing integral equation (2.21), from which
we will be able to determine both k, and (f, y)(r1, 41). To summarize, the method has three
steps:

(i) Separate microstructure and boundary. The assumption made with equation (3.1) is used
in the governing equation (2.21) to derive two separate equations called the ensemble
wave equation and the ensemble boundary condition. The first one only depends on the
microstructure of the random material while, in contrast, the second one takes into
account the incident field and the shape of the random material, acting much like a
boundary condition.

(if) The effective eigensystem. We decompose (f, n)(r1, 41) in the basis of functions V,(k,r1)
and substitute the decomposition into the ensemble wave equation. The coefficients
F(4;) of the decomposition are then shown to be the eigenfunctions of an eigensystem
whose eigenvalue is k.

(iii) The ensemble boundary condition. To determine the amplitudes of the eigenfunctions
F(4;), we then use the ensemble boundary condition, which takes into account the
incident field and the shape of the random material.

(a) Separate microstructure and boundary

We follow the steps described above to determine the solutions (f,)(r1, A1) of equation (2.21).

The first step uses equation (3.1), and some algebraic manipulations shown in appendix C.1 to
rewrite the governing equation (2.21) into two separate equations:

Fr, )+ ) Tn(/ll)J:g[irzl'"(;{lz) - Kun(r1)|n(d2) d22 = 0 (ensemble wave equation), (3.2)
— ks

nez

Z V- n(kr)) g, + ZJ; Z’;’"(:z) n(dy)di, =0 (ensemble boundary condition). 3.3)
n' n' T K%
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The terms J,,,(r1), Tyn(r1) and K,(r1), respectively, defined in equations (C 6) and (C 3), involve
the function (f, n)(r1, A1).

One of the key advantages of splitting the integral equation (2.21) into the two separate
equations above is that the ensemble wave equation (3.2) does not depend on the shape of the
region R or the incident wave. As we will see below, the ensemble wave equation (3.2) can
be used to determine the effective wavenumber k,, which implies that k, only depends on
the microstructure: the density of the particles n(4,), their properties provided by the T-matrix
T,(41) and the pair correlation g, which explicitly appears in the quantity X, ,(r1) defined in
equation (C 3). We further discuss how to interpret k, in §4.5.

On the other hand, the ensemble boundary condition (equation (3.3)) acts like a boundary
condition and shows how the incident wave and material boundary affect the overall solution.

(b) The effective eigensystem

Since (f,)(r1, A1) satisfies equation (3.1), it can be decomposed into the modes

(fudrL, 1) = ) Fu(M)Viy(kurt), M ES, Irl <Ry, (3.4)
ny

where V,, is defined in equation (2.3).
The unknowns k, and F,,(41) can be determined by substituting equation (3.4) into equation
(3.2). The details are shown in appendix C2 with the resulting equation being
anl(/‘ll) + Z 5n2 -np+n' - nTn(/ll)J;N}f— n(k/ k*)Fn'nz(AZ)n(Aﬁ dflz = 0/ (35)
n'ny

where J, is defined by equation (2.22) and

b
NPk, k) = 2n—Nl(kk‘22_' ';;a“) - 2WL1122]l(k*r)Hl(kr)5g(r)rdr, (3.6)
Ny(x, y) = xHj(2)]i(y) - yHi()J1() - (3.7)

The above is a nonlinear eigenvalue problem, which is why we refer to k, as an eigenvalue.
After calculating k, we can calculate the eigenfunctions F,,,(4;) by solving the linear system

of equation (3.5), though, in practice, it is far better to calculate both k, and F,,(41) using the
modal decomposition, as we do in §4.

(c) The ensemble boundary condition

The eigensystem equation (3.5) is not enough to fully determine the F,,,, for instance, if Fy,,,, is a
solution to the eigensystem then so is aF,,, for any scalar a.
To fully determine F,,, we need to substitute equation (3.4) into the ensemble boundary

condition, namely equation (3.3). The details are shown in appendix D, the key results being
equations (D5) and (D6), which exploit the symmetry of the region R, when chosen to be a
cylinder. Combining these two equations after setting the radius R, := R — a, finally results in the
boundary condition:

2
o s 2 [ PN - (kR kuRe)(ie) di =0, (3.8)
* n

where N; is defined by equation (3.6).
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4. An effective cylinder

(a) Modal decomposition of the problem

In this section, we exploit the rotational symmetry of the region defined by equation (2.1) in
which the particles are contained. Since equation (2.21) is linear with respect to g, it can be
decomposed into simpler and independent equations: let (f, n)(ri, 41) be the solution when
substituting g, = 6y -, in equation (2.21), then

(Fn, N1, A1) = Tp(A) VN - nlkr1) (4.1)

+Ta) Y, [ 100) [, Unt - nllers = ko) o, n)(r, 2)g(1 71 =721, 21, 20) dradda,
-

then we can recover the solution for any incident wave by using
S A1) = Zgnfn, N, A1) (4.2)

From the three-dimensional version of these effective equations [19], we know that equation
(3.5) can be reduced by using symmetry. We show how to do this for the modal decomposition
below, with the result being:

(fn, N1, A1) = anFy N(A) Vi - n(kyr), 4.3)

where ay € C is some amplitude that is introduced for later convenience. Below is the proof of
equation (4.3).

Proof. Using the rotational symmetry of the modal source, we simplify the form of the modal
solutions (f,, n)(r1, 41). To this end, we denote by Ry the rotation matrix of angle ¢ and replace r;
with Ryry in equation (4.1):

(fr, MRy, A1) = Tp(A1) Vi - pn(kRyF1) (44)
ST Y [0 [, U w0eRgrs = KR (f )Ry, Zo)g( | 71 =12 Ndrad
—
where we changed the integration variable from r, to Ryr,, which is possible for any rotation as
R, is a disc. Then, from equation (2.3) we deduce the property
Un(Rgry) = Uy(r)e™ and  V,(Ryr) = Vy(ri)e™,

using the latter in equation (4.4), and then multiplying both sides of the equation with
e iN=-1% eads to

(fn, MRy, A1)e N =8 = T (A1) Vy (k) + (4.5)

T Y 1a) [, Unr-athers = kra)e =09, \)(Rgrs Zo)g( 171 =1 | )drad.

Now note that both (f, n)(Rgry, 1)e N -mé and (f, N)(r1) solve exactly the same integral
equation. So by assuming uniqueness, i.e. that there is only one solution to the above, we
conclude that

(fr W) = {fr IRgr1)e N =%, (4.6)

for any r; and ¢. Let (ry, 61) be the polar coordinates of r;, then, without loss of generality, we
then choose ¢ = -6, which leads to

(f, N1, 81, 40) = (Fn, n)(r1, 0, A1) ™1 “7)

Finally, because (f, y)(r1) satisfies a wave equation (3.1), the only possibility for it to satisfy
equation (4.7) is to be of the form given in equation (4.3). |
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(b) The modal dispersion equation

We can deduce a simpler effective eigensystem and dispersion equation by using the symmetry
equation (4.3). To start we substitute equations (C 8) and (4.3) into the modal decomposition in
equation (4.2) to obtain

Zanl(/h)Vm(k*rl) = Z OlegNan, Nl(/h)VN1 7n(k*r1) . (48)
ny N1

Then, since V,, form an orthogonal basis of functions,

Fppy = %: SNy -y - nON 8N Fn, Ny - (4.9)
1

To simplify the effective eigensystem equation (3.5), we consider one mode at a time by taking
&n; = On; -~ Which used in equation (4.9) implies that we can substitute F,; = Oy -4 - n0NFn, N

into equation (3.5). The result after some algebraic manipulations is
Fo (1) + X Tul) [L VI e o) o, () 1(22) b = 0. (4.10)
=

The above equation is identical to the case of the eigensystem for plane waves [34] and matches
also the eigensystems for a single type of particle [12,41] when taking n(4) = (4 - 4;). This result
is somewhat expected as the ensemble wave equation (3.2) does not depend on the incident
wave and material geometry, which also explains why the modal index N only appears in F, y
in the above.

Instead of solving equation (3.5), it is far simpler to solve the above and then write the
general solution in the modal form using equation (4.9). In practice, to solve equation (4.10),
we can discretize the integral over 8 as a set of reals {ty, ..., ts}. Then define a block vector
F containing the entries F,(t;) for n=-M,-M+1,...,M—1,M, for some finite M, and for
s=1,..., S, so that the eigensystem becomes

(I+M)-F=0, (4.11)
where My o(ky) = Tp(ts) N o n(k, ki) n(ty) . (4.12)

The parameter k, is then obtained by solving the equation (4.13)
det[I+M(k,)] = 0. (4.13)

Multiple wavenumbers. The dispersion equation (4.10) has infinitely many eigenvalues k,
with p=1,2,.... Consequently, (f,)(r;) can more generally be written as a sum over all the
eigenvalues k;, and their corresponding eigenfunctions [42], which leads to more accurate
solutions. However, only a small difference in comparison with using just the eigenvalue
with the smallest imaginary part is observed (cf. [19,41,42] for details). For this reason, and
for simplicity, we only account for the one wavenumber k, in this article. See figure 5 for a
typical distribution of the many eigenvalues of equation (4.10).

(c) The modal ensemble boundary condition

To determine the ay that appears in equation (4.9), we need to use the ensemble boundary
condition. The simplest way to do this is again to take gy, = 6y, -y in equation (4.9) and then
substitute the result into equation (3.8) to obtain
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Multiple effective wavenumbers
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Im (kpa)
7
T

1.0 |

0.5 F

k.=~ 1.05+0.052

00k . e C . !
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Figure 5. Eleven of the eigenvalues k, of equation (4.13) for any material filled with sound hard particles of radius a = 1
and a particle volume fraction of n = 0.15. Here, the frequency is such that ka = 1. Note that changing R does not affect
the eigenvalues k, as the dispersion equations (4.10) or (4.11) do not depend on the radius R. k.. corresponds to the one with
the smallest imaginary part. The x-axis is the real part, and the y-axis is the imaginary part. The other wavenumbers have a
much larger imaginary part leading to evanescent waves inside the random material.

1+

2na,
S [ NNy (kR ki Ro)n(hs) A =0, (4.14)
* n'

which we can use to determine:

12— 12 -1
o= =S5 {3 [ PN (R, Ry ) 0] (@.15)
n

(d) The effective T-matrix

As discussed in §2(c), the effective T-matrix 77, y can easily describe the average scattered wave
for any incident wave through:

(§n) = N:Zw_wf n, NEN» (4.16)

where the (F,), given by equation (2.20), are the average coefficients of the waves scattered from
the whole cylinder R. Note the above holds for any choice of gy and 7, 5 does not depend on
8N-

To calculate 7, n, we substitute the modal decomposition given by equation (4.2) into (2.20)
to obtain

(B0 = D f ) [y, Z Vo= kri) s ) . (417)

Comparing the above with the definition of the effective T-matrix given by equation (4.16), it is
clear that
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T = [0 o, 2 Vo= k) F ), ) i (4.18)

To calculate the above, we follow the same steps shown in appendix C. Specifically, we use
Green'’s second identity equation (C 4), the regular expansion equation (4.3) and the orthogonal-
ity of the V, functions to conclude that

2na
T = Bz [ ) Y F )@ kR, KuRi)ld, (4.19)
* n'

where R is the radius of the disc R; and we defined:

Qu(x, y) = xJi()() = Y1OJi(Y) - (4.20)

Finally, we substitute a, given by equation (4.15), which results in

[0 Y P 1)@ (KR, Ky Ri)A

Tnn=~0ON-n : (4.21)
Jin0 Y F N, - Ry, erR) d
n

We recall that the diagonal terms 7, ,, of the effective T-matrix are denoted T, in this article.

Note that once the effective T-matrix is known, the scattering from any incident field can be
computed with equation (2.19) after decomposing the incident field in modes as in equation
(2.4). For example, in figure 6, we have plotted the total pressure field u :=ujn. + U resulting
from an incident plane wave and a point source.

(e) Monopole particles only

The effective T-matrix equation (4.21) resembles the T-matrix for a homogeneous cylinder, see
for example equation (2.7). In fact, it is a weighted average of the factors of a homogeneous
T-matrix, as explained in §1. From this observation, we see that if the particles are monopole
scatterers we obtain a significant simplification.

Let us assume here that the particles scatter only monopole waves, in which case the
scattered field given by equation (2.5) becomes

Use(r) = él SoHo(kr = kry), (4.22)

which leads to (fy, y)(r1) =0 if n # 0 and, as a result of equation (4.3), F,, x = 0 if n # 0. Substitut-
ing this result into the formula of the effective T-matrix given by equation (4.21), and assuming
that the radius Rj of the region R is the same for every type of particle 1;, we obtain:

KJ(kR)J (k4 R) = kuJ u(KR)J (K R)

TN =
n, N N-n ~ =~ = =
KH(KR)Jn(k+R) = ko Hy(KR)] (k4 R)

(monopole scatterers). (4.23)

This corresponds to the T-matrix of a homogeneous cylinder of radius R = R - a, sound speed
¢y = w/k, and mass density p, = o, where p is the density of the host medium (cf. equation (2.7)).
The situation of the scattering by monopole particles is illustrated in figure 7.
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Average field for two different sources
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-0.125

Figure 6. Average pressure field when the incident field is a plane wave (left) and a point source (right). The material is
made of sound hard particles of radius @ = 1 confined in a disc of radius R = 20. The particle volume fraction is set to
n = 0.05. The frequency is such that ka = 0.1and kR = 2.

Monte Carlo results: monopole particles

0.0
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Figure 7. Comparison of various methods to calculate the components Ty and T, of the T-matrix of a cylinder filled with
monopole scatterers. The solid red line is our EWM (equation (4.21)), the black points are from the MC method (equation
(5.2)) and the dashed blue line is our method when only monopole scattering is accounted for (EWM-MA) (equation (4.23)).
In this situation, EWM of course coincides with EWM-MA since the latter corresponds to EWM in the particular case of
monopole scatterers. All graphs were generated with particles of radius a = 1 inside the cylinder of radius R = 20, the volume
fractionis setton = 0.1.

5. Numerical results

(a) Data accessibility

The numerical results [43] presented in this section are produced with the open-source software
EffectiveTMatrix.jl [44] implemented in Julia. The package source code is also accessible on a
GitHub public repository* where the specific script used to generate the data is available®.

“Repository: https://github.com/Kevish-Napal/EffectiveTMatrix.jl/tree/1.0.0
*Script: https://github.com/Kevish-Napal/EffectiveTMatrix.jl/blob/1.0.0/examples/RSPA/generate_data.jl
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Optimized Monte Carlo simulations
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Figure 8. Computation of Ty using the two different methods given by equations (5.2) (modal) and (5.3) (naive). We
computed 5000 realizations of these quantities for different configurations of particles, the plots on the top and bottom,
respectively, correspond to the real and imaginary parts of the results. The distribution of the results is reported on the
histograms on the left. The plots on the right correspond to the cumulative average of the realizations. Both methods
converge to the same limit; however, the modal method converges faster and presents a lower standard deviation of the
mean. The simulations were computed with particles of size a = 1 constrained in a cylinder of radius R = 20, frequency
ka = 1and volume fraction of n = 0.05.

(b) Optimized Monte Carlo simulations

We use a MC method to validate our theoretical results (equations (4.21) and (4.23)). To develop
an efficient MC method, we rely on the following symmetry of the modes:

Uinc(r) = Tn(kr)eN® = (u,)(r) = TyHy(kr)elN°. (5.1)

This result is easily obtained from equation (2.19) with the specific choice g, =4, y, which
substituted into equation (2.18) leads to

Ty =(&n)- (6-2)

In other words, Ty can be numerically estimated by simulating the waves scattered from one
particle configuration at a time by using equation (2.6), and then taking the average of Fy
defined by equation (2.16) over many different particles configurations.

To illustrate the efficiency of this MC method, we compare it with another method com-
monly used in the literature [38], which directly computes (us). For this second method, we use
equation (2.5) to compute (us)(R, 0). Then, from equation (5.1), we can also compute Ty with

Ty = Hy (kR)(us)(R, 0) . (5.3)

The two methods (equations (5.2) and (5.3)) are compared in figure 8. The standard deviation of
the mean of the second method is larger than the first one, resulting in a slower convergence.
The reason is that equation (5.3), in contrast to equation (5.2), includes all the modes of each
scattered field computed for a specific particle configuration:

(R, 0) = (ZB,H(kR)). (5.4)
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Monte Carlo results: sound soft particles
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Figure 9. Comparison of various methods to calculate the components Ty and T, of the T-matrix of a cylinder filled with
sound-soft particles. The solid red line is our EWM (equation (4.21)), the black points are from the MC method (equation
(5.2)) and the dashed blue line is our method when only monopole scattering is accounted for (EWM-MA) (equation (4.23)).
The general expression of the effective T-matrix matches the MC results. The EWM-MA method only matches well with the
MC for low frequencies. All graphs were generated with a volume fraction n = 0.05 of particles with radius a = 1inside the
cylinder of radius R = 20.

While the terms n# N of the sum vanish on average, they significantly contribute to the
standard deviation of the mean in equation (5.3).

(c) Validation of the effective waves method

We validate the EWM equation (4.18) against the MC method equation (5.2) for several
frequencies w over an interval Q, such that the dimensionless variable ka ranges from 0.05
to 1.5. To this end, we define the relative error, averaged over frequencies:

1 I TH (@) - T"™M(@)|

€p = ﬁwég |TnMC(CU) | ’ (55)

where TV(w) is obtained following the MC method equation (5.2) and TEVM(w) following the

EWM equation (4.18). A few plots of V(@) and TE"M(w) are provided in figures 2, 9 and 10.
The values of ), €, &, €3 and ¢, for the cases of sound soft and sound hard particles are reported
in tables 1 and 2.

The EWM equation (4.21) gives reliable results for a broad range of frequencies, including
high frequencies, provided that the volume fraction is not too high, as shown in figures 2, 7 and
9 the top graph of figure 10 and the first two rows of tables 1 and 2.

Figure 10 shows that the predictions of the EWM for monopole scatterers (equation (4.23))
closely match the MC predictions. So does figure 9 at low frequencies. This is expected, as
sound-soft (or Dirichlet) particles are known to behave like monopole scatterers [45] for low
frequencies. Figure 9 also shows that as the frequency increases we need to use the EWM that
includes higher order modes (or multi-poles) (equation 4.21) to obtain a good match with the
MC results. Figure 2 in the introduction also confirms these conclusions.

Finally, the accuracy of the EWM decreases as the volume fraction increases (tables 1 and 2,
figure 10). Several parameters influence the precision of the results when increasing the volume
fraction. First, a more precise pair correlation function, such as Percus-Yevick, should be used
when the volume fraction increases, while we only used the hole correction in our simulations.
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Accuracy of the method when increasing the volume fraction n
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Figure 10. These graphs show similar plots as shown in figure 2 with increased volume fraction, n = 0.1 (top) and n = 0.2
(bottom). The solid red line is our EWM (equation (4.21)), the black points are from the MC method (equation (5.2)) and the
dashed blue line is our method when only monopole scattering is accounted for (EWM-MA) (equation (4.23)). The EWM-MA
method is expected to match the MC results only in the case of sound soft particles (Dirichlet) and at low frequencies. Overall,
the accuracy of EWM and EWM-MA for predicting MC decreases as the volume fraction increases. All graphs were generated
with particles of radius a = 1inside the cylinder of radius R = 20.

Table 1. Relative errors €, are defined by equation (5.5) in the cases of sound hard particles. The particles are of radius 1 and
confined in a circular area of radius 20. The computations are mode for different volume fractions n = 0.05, 0.1, 0.2.

€ €1 € €3 (1
n=0.05 2.66e72 243e 233¢72 2.35¢72 2.27e?
n=01 ......................... 669e-2 .......................... 592e-2 ..................... 6 216_2 ....................... 543e-2851e-2 .......
n:02134e71128e4 ..................... 124e71 ....................... 114e71 ....................... ngq .......

Second, the assumption equation (3.4) is not necessarily valid for densely packed particles, and
more effective wavenumbers (k,, # k) are required, such as shown by the decompositions used
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Table 2. Relative errors €, are defined by equation (5.5) in the cases of sound soft particles. The particles are of radius 1 and
confined in a circular area of radius 20. The computations are mode for different volume fractions n = 0.05, 0.1, 0.2.

in [19,42]. These multiple effective wavenumbers contribute to a boundary layer that has been

neglected in this present work and plays a more important role at higher volume fractions.

6. Conclusion

Main goal. Our main goal was to describe how an incident wave is scattered from a cylinder
filled with smaller cylinders, which we have called particles, that are placed in a disordered
but correlated way. We describe this correlation through the inter-particle pair correlation, see
equation (2.11). The literature so far has focused on plane waves scattered from a halfspace
or plate filled with a particulate [17]. There has been at least one paper on solving this sce-
nario, but used an ad hoc method, whereas here everything is deduced from first principles
making only two assumptions: such as the QCA [15], and expressing the average field as a
sum of effective waves, which has been shown to be the analytic solution [42]. One of the
key advantages of describing the scattering from a cylinder with two-dimensional particles is
that it is far easier to validate this scenario with direct numerical simulations. Validation is
still necessary as the theory requires the use of QCA, whose level of accuracy has not been
thoroughly investigated yet. Additionally, confirming this scenario also supports the accuracy
of the predicted effective wavenumbers for any material geometry [19].

Modal scattering. We used this method to simplify both the theoretical and MC simulations.
By leveraging all present symmetries, we solved for each polar mode of the incident wave
separately, which allowed us to streamline the validation process for this work. This simple, but
effective technique, leads us to an effective T-matrix given by equation (4.21) that can be used
to calculate the average scattered wave from any incident wave, see §3 for a brief overview.
We note that we were able to describe the scattered field without calculating the average
transmitted field. In future work, this may be interesting to do, for example, to clearly identify
when different effective wavenumbers are excited [17].

Effective T-matrix. The result of our theoretical work is summarized by the T-matrix
equation (4.21). Beyond using just QCA, to calculate this T-matrix, we also assumed that only
one effective wavenumber k, is excited. This is true for a wide range of parameters, but it is not
always the case. In particular, it appears that very strong scattering at moderate frequencies can
trigger more than one effective wavenumber to be excited [17,19,41]. One possible extension to
our work is to include the effect of more than one effective wavenumber.

Monopole scatterers. One surprising result is that if the particles only scatter monopole
waves, then the effective T-matrix greatly simplifies and becomes equation (4.23). This form
is exactly the same as the T-matrix for a homogenous cylinder, one with constant material
parameters. We hypothesize that any material filled with monopole scatterers would, on
average, respond like a homogeneous material. Monopole scatterers are a good approximation
for many types of resonant particles [31]. Figure 9 compares the results for the monopole
scattering approximation with MC results for sound-soft particles, which does not assume the
particles scatter like monopoles.

09906207 :08k / 705 3 204g edsy/jeuinof/bio-buysyqndaapos(efos



Downloaded from https://royal societypublishing.org/ on 19 June 2024

Monte Carlo. Beyond deducing an effective T-matrix for a particulate cylinder, we also
developed an efficient MC method, which matched our theoretical predictions very accurately
(see figures 2 and 9). Our numerical validation was for a broad frequency range, but we did
not cover a broad range of parameters. Doing this would be valuable future work and could
help clearly identify the limits of QCA and different approximations for the inter-particle
pair-correlation.

A prototype for new materials. The setting we deduce is the ideal case to test new disor-
dered particulates. That is, to use exotic inter-particle pair-correlation to achieve effects such
as band gaps, or impedance matching. The scenario of a cylinder filled with two-dimensional
particles is ideal for testing new types of particles, and inter-particle pair-correlations, because
they can be easily validated with MC methods. When designing new materials with exotic
responses, and stretching the limits of the theory, we need to have a way to validate those
predictions. This article provides such a framework that we recommend for the advancement of
innovation in material designs.
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Appendix A. Bessel functions and translation matrices

Given two points x, y € R?, we have the following identities whered =y - x

Y Vi@ Vu(x), forallx,de R’

M Vu») =
(i) Un(y) = f Viow(d)Up(x), forall x| > |dl

(i) Un(y)

Y Up_p(d)Vy(x), forall x| <Idl.
w e (AT)

The above formulas are direct consequences of Graf’s theorem (see [35, Th. 2.11-2.12] for
instance).

Appendix B. Ensemble averaging

B.1. Definitions

Here we give a brief overview of ensemble averaging so that this article is more self-contained.
For more details, see [19,35] and the references within. To simplify computations, we represent
one particle configurations with:
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1
A=ry, A1, Ay AV =ry 1o..rp Ay,
AYD =y Qo T, Ao T, A ry,
220 e V-1 A -V j+ L, Aj+ 1y e g, AT -

Using these definitions, we define the ensemble average, and conditional ensemble averages, of
a quantity A, which can depend on the positions and properties of all the particles, as

(A):= IA(A) p(A) A (A)ryA) = IA(A) p(AD | r:2) dA?, (B 1)

(AXry, Az A)) = IA(A) p(A“) 1 r, 257, 25) dAYD, (B2)

where the domain of integration for A is over all possible particle positions and properties. The
term (A)(r;, A; 1), ;) is the ensemble average of A conditional to (ry, 4y, 12, A2).
Taking an ensemble average defined by equation (B 1) on both sides of equation (2.16) leads to

J

(&) = Zm f( -1 nrvn —n(kr)(f fq’)(rir A)p(ry, A;) drid; (B3)

i=1n'=-e

1 3 [V N ) e, pe, A driddy

n=-o

where we used the definition of conditional probability: p(A) = p(r;, Ai)p(A(i)), the definition of

conditional average as in equation (B 2) to introduce the term ( fi)(ry, 4), and that particles are
indistinguishable.® Finally, using equations (2.10) and (2.12) leads equation (B 3) to formula
(2.18).

B.2. Average governing equation

Here we briefly show how to reach the averaging governing equation by using just one
assumption, the QCA. For more details, see [19].
Taking the conditional average, defined by equation (B 1)y, of equation (2.5) with i =1 gives

(s, 2a) = Tu(Aa) 3 Ve - ulkr)gs

+Ta(M1) Y ZIU,,r,n(krl = kr) £y, MpAD | 1y, 1) dAD.
e (B 4)

We can simplify the above by using the definition of the conditional average defined by

equation (B 2) of f{lr(rl, A1, 1), A)j), using equation (2.12), and that particles are indistinguishable to
obtain

£y, Aa) = To(An) - Vi - (ki) g (B5)

n
T 2[00 [ Ut ke £1)(rs Jo i Ao i e
However, this equation is not a closed-form equation for (f 1%, A1), and an extra assumption is
required to proceed further.

A standard solution found in the literature to tackle the problem mentioned above is to use the
QCA, which is a standard closure approximation [46]. It is stated as follows:

(fadr, A ro, o) = (f)ra, o), |ri—ral 2@ (QCA). (B 6)

See [34] for a brief discussion on this approximation.

*Said in another way, the variables of integration ; and A; are just dummy variables which can be all changed to 7 and Ay.
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Finally, we use that particles are indistinguishable, which implies that ( f:,)("],/h) =( fﬁ)(rz, )
when ry = r, and 4; = 1, to substitute
(2, 20) = (f)(ra, d2)  and (fu)(r, A1) = (Fu)ry, Aa), (B7)

into equation (B 5), which together with QCA given by equation (B 6) leads to the average
governing equation (2.19).

Appendix C. The effective waves method

C.1. Derivation of two ensemble equations

Here we show how to use the effective wave assumption to rewrite the governing equation (4.1)
into two separate equations: the effective wave equation and the effective boundary condition.
To achieve this, we define for y € R and a > 0 the set

D(y,a)={x e R: |x-yl <a}.

Using the decomposition of the pair correlation function given in equation (2.13), we split the
domain of integration in the governing equation (2.19) into two integrals: one over D(ry, ai»),
another one over R, \ D(ry, a;») in the form

(f(ry, A1) = Tn(/h)Z Vi - n(kr)gy +Tn(/11)ZLn(lz) 2\ (e g O ~n(kF1 = KE2)(f )2, Z)draddy (C1)

Dry, ar, bu)U"""(k” - kr2)<f,,r)(r2, /12)6g( | rH—r | , /11, lz)dl’zd/lz,

T ()Y, [(n@)

where D(ry, ai2, bi2) :== D(r1, bi2) \ D(r1, a12) and the annulus D(ry, ai2, b12) is completely contained
within R, when

dist(rl, 6.732) > b12 . (C 2)

In this section, and in this article, we only solve equation (4.1) for r; that satisfies the above. This
avoids the boundary layer [41,42], which greatly complicates the solution and is only needed
when there is a large particle volume fraction, moderate frequencies and strongly scattering
particles.

The last integral in equation (C 1) can be simplified by changing the variable of integration to
r = r, — r;, which leads to the integral

Fpn(ry, Ag) = J;)( Uy _n( = kr){f ) + 711, 1)dg(r, A, ) dr. (C3)

0,a12,b12)

The first integral over r; in equation (C 1) can be further simplified by using Green’s theorem
to replace the volume integral over R, \ D(ry, a1p) by surface integrals: given any two function
smooth functions u, v which satisfy

Au(r)+kyu(r)=0 and Av(r)+ku(r) = 0, over a set Q we have that

(2 - ki)fguu dr= IQ(Auv —uAv)dr = J;Q(a,,uv — ud,v) ds(r) . (C 4)

With u(r,) substituted for (f, n)(r2, A2) and v(r,) substituted for U, _,(kr; - kr,), we can use the
above to deduce:

jn'n(rl) - 3n'n(r1)

Uy - n(kry = kr2)(f )2, A2)dra = —
12— 12

J;Zz \ D(r1, a12) ’ (C5)

where we defined
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K fu)(ra, A2)  OUy_ (kg — kr

Tt = fg, U -l = ey 02 OOl 2RI g iy, (o)
Hf,)(r+ry, A oU, _,(—kr

Bunr) = [ oy U -~y LT ) QUn il ZKT) sy, 200,

Finally, substituting equations (C 3) and (C 5) into the governing equation (2.19) gives

(fadry, ) = Ta(A) ) Vi - (k) (€7)
=
S [[PN R o e
A I

The above now can be split into two separate equations by noting that the functions (f,)(r1),
Jun(r1) and Ky, (1) satisfy the wave equation with wavenumber k,, while V,(kr;) and J,,,(r1)
satisfy the wave equation with wavenumber k. Since solutions of the Helmholtz equation with
different wavenumbers are independent, see [19] for details, equation (C 7) can be split into
the ensemble wave equation (3.2) containing the terms with wavenumber k, and the ensemble
boundary condition (equation (3.3)) containing the terms with wavenumber k.

(.2. The effective eigensystem

Here, we deduce a general eigensystem that can be used to determine the effective wavenumber
k, and write (f,)(ri, A1) in terms of eigenfunctions.
Since (f,)(r1, A1) satisfies the wave equation (3.1), it can be decomposed into the modes

<fn>(r1/ /11) = %an(/ll)vm(k*rl)/ (C 8)

where V,, is defined in equation (2.3).
The unknowns k, and F,,(4;) can be determined by substituting equation (C 8) into (3.2),
which requires the term

<fn>(r +ry, /12) = Z anl(AZ)Vm - nz(k*r)vnz(k*rl)r (C 9)

niny

where the right side is a result of using Graf’s addition theorem (equation (A 1), i) in (3.4).
By substituting equation (C 9) in X,,(r1) (C 3), we can use the orthogonality of the cylindri-
cal Bessel functions to remove the sum over ny, because only the cases (n; —n) = (n—n') are
non-zero.
Likewise, we can perform the same simplification by substituting equation (C 9) in J,y,(r1) (C 6).
The simplifications result in

xn'n(rl) = 27-(Wn'— n(k/ k*)z Fn'nl(/b)vnl +n' - n(k*rl)/ gn'n(rl) (C 10)
n

=~ 27-(Nn’ - n(kaur k*QIZ)Z Fn'nl(ﬂ-Z)an +n' - n(k*rl),
n
where we introduced the notations

b
Wik k) = [, HknTean)8g(r, 21, Zo)r dr, N, 3) = xHICOIG) - VHJID) . (C11)

Finally, substituting equation (C 10) in the ensemble wave equation (3.2), and again using the
orthogonality of the cylindrical Bessel functions, we reach equation (3.5) where the following
term appears:

NE(k, ky) = 271% —2mWi(k, ky) . (C12)
7
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Appendix D. Boundary condition for effective waves

The eigensystem equation (3.5) is not enough to fully determine the F,,,, to do so we need to
substitute equation (3.4) into the ensemble boundary condition equation (3.3). To achieve this,
the first step is to use Graf’s addition theorem (equation (A 1), iii) with x=r; and y =-r; to
obtain

Uy —p(kry — ki) = nzvn3(kr1)Un'—n—n3(_kr2) = nzvnz—n+n'(kr1)U—n2(_kr2)r (D1
3 2
where we used the change of variable n, = n+nz—n’, and that |r;| §lt; |r;| because for J,, the

variable r, is on the boundary 0.R,, whereas r; satisfies equation (C 2). Substituting equation
(3.4) in I, defined by equation (C 6) and using the above equation (D 1) gives

D) = 3, Frin ) BV -, (D2)
where
By = (12 U ttory ) Tyl (03)
then substituting equation (D 2) in (3.3) leads to
S Viallrig s B [ Fun(e) V- e ) 42 =0 (D4

We can further simplify the above by using the orthogonality of the functions V,, to obtain

N
ot Y [P nluz)Mnuz) dh = (D)
n'ny
which holds for every N.
When all particles are in a disk, then 0R; is a circle and the above simplifies. This is the only
case we completely resolve in this article. Let Ry be the radius of the disk R,, then n, =n; in
equation (D 3), which reduces to

Biing = ~2T0p; - yNpy (KR2, ki R2), (Do)

where N, is defined by equation (C 11). Substituting this into equation (D 5) leads to (3.8).

Appendix E. Elementary proof that the effective T-matrix is diagonal

We provide an elementary proof that J is diagonal when the particles are confined in a disk
of radius R. To this end, we consider the scattering from the modal source ul. obtained for
8 =6n-N:

The notation §, y is the corresponding §, to the specific incident field with g, = 6, 5 (compare
with equation (2.16)). We then denote by f;z ~(0) the resulting solution of equation (2.5) for the
specific configuration o = ry, ..., r;. The rotation by angle ¢ of the particles ry, ..., r; corresponds

to another valid configuration (because the random material is cylindrical), for which the
solutions are given by

Frn(Rgo) = eV "Mf 1(0). (E1)

This tells us how the rotation of a configuration modifies the coefficient §, y, using equation
(2.16):
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J too i
&n, n(Ry0) = _;1 L Va- w(kr)e ™ ="2 fn n(0). (E2)

Consequently,

1 27T
o) = [[Bnn(@p©) do = [ 5 [ B n(Re0)p(0) dodg = 6, n [ B n(@p()do,  (E)

where §, is defined by equation (2.20). Finally, we deduce

T = Suon [ n (o 1P ), o dry (E4)

This analysis proves that only the diagonal terms of the effective T-matrix are non-zero and can
be estimated by T, , = (&, n)-
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