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Abstract We consider the problem of detecting the presence of sound-hard cracks
in a non homogeneous reference medium from the measurement of multi-static far
field data. First, we provide a factorization of the far field operator in order to im-
plement the Generalized Linear Sampling Method (GLSM). The justification of the
analysis is also based on the study of a special interior transmission problem. This
technique allows us to recover the support of the inhomogeneity of the medium
but fails to locate cracks. In a second step, we consider a medium with a multiply
connected inhomogeneity assuming that we know the far field data at one given
frequency both before and after the appearance of cracks. Using the Differential
Linear Sampling Method (DLSM), we explain how to identify the component(s) of
the inhomogeneity where cracks have emerged. The theoretical justification of the
procedure relies on the comparison of the solutions of the corresponding interior
transmission problems without and with cracks. Finally we illustrate the GLSM and
the DLSM providing numerical results in 2D. In particular, we show that our method
is reliable for different scenarios simulating the appearance of cracks between two
measurements campaigns.
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1 Introduction

This work is a contribution to sampling methods in inverse scattering theory when
the issue is to determine the shape of an unknown inclusion from fixed frequency
multi-static data. More precisely we extend the Generalized Linear Sampling Method
(GLSM) and the Differential Linear Sampling Method (DLSM) [2, 3] to inhomo-
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geneous media containing sound-hard cracks. GLSM provides an exact characteri-
zation of the target shape from the far field operator, and its implementation mainly
requires two complementary factorizations of the far field operator, one used in
the Linear Sampling Method (LSM) and another used in the Factorization Method
(FM). From the measurements for both the damaged background and the initial
background, it is possible to detect the defect thanks to the DLSM. This method
consists in combining a result of comparison of two interior transmission problems
associated with each background and the results of the GLSM.

The purpose of this article is to establish a similar factorization for a medium con-
taining sound-hard cracks and to provide the theoretical results needed in the jus-
tification of the DLSM, the method we use to identify emergence of defects in an
unknown background. For references of works dealing with qualitative methods to
detect cracks, we mention, among others, [5, 6, 11, 4].

2 The forward scattering problem

Ω

D

Γ

ν

ν

Fig. 1: Example of setting in R2.

We consider an isotropic medium embedded in Rd , d = 2 or 3, containing sound-
hard cracks. Following [6], a crack Γ is defined as a portion of a smooth nonin-
tersecting curve (d = 2) or surface (d = 3) that encloses a domain Ω, such that its
boundary ∂Ω is smooth. We assume that Γ is an open set with respect to the induced
topology on ∂Ω. The normal vector ν on Γ is defined as the outward normal vector
to Ω (see Fig. 1). To define traces and normal derivatives of functions on Γ, we use
the following notation for all x ∈ Γ:

f±(x) = lim
h→0+

f (x±hν(x)) and ∂
±
ν f (x) = lim

h→0+
ν(x).∇ f (x±hν(x)).

We shall also work with the jump functions

[ f ] := f+− f− and
[

∂ f
∂ν

]
:= ∂

+
ν f −∂

−
ν f .
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We assume that the propagation of waves in time harmonic regime in the reference
medium is governed by the Helmholtz equation ∆u+k2u = 0 in Rd where ∆ stands
for the Laplace operator of Rd and where k is the wave number. We assume that the
cracks are embedded in a local perturbation of the reference medium. To model this
perturbation, we introduce n ∈ L∞(Rd) a complex valued coefficient (the refractive
index of the medium) such that n = 1 in Rd \D and n 6= 1 in D. Here D ⊂ Rd

is a bounded domain with Lipschitz boundary ∂D such that Rd \D is connected.
We assume that ℑm(n) ≥ 0 in Rd and that Γ ⊂ D. The scattering of the incident
plane wave ui(θ , ·) := eikθ ·x of direction of propagation θ ∈ Sd−1 by the medium is
described by the problem

Find u = ui +us such that
∆u+ k2nu = 0 in Rd \Γ

∂±ν u = 0 on Γ

lim
r→+∞

r
d−1

2

(
∂us

∂ r
− ikus

)
= 0,

(1)

with ui = ui(θ , ·). The last line of (1), where r = |x|, is the Sommerfeld radiation
condition which selects the outgoing scattered field and which is assumed to hold
uniformly with respect to x̂ = x/|x| ∈ Sd−1. For all k > 0, Problem (1) has a unique
solution u belonging to H1(O \Γ) for all bounded domain O ⊂ Rd . The scattered
field us(θ , ·) has the expansion

us(θ ,x) = ηdeikrr−
d−1

2

(
u∞

s (θ , x̂)+O(1/r)
)
, (2)

as r→ +∞, uniformly in x̂ = x/|x| ∈ Sd−1. In (2) the constant ηd is given by ηd =

ei π
4 /
√

8πk for d = 2 and by = 1/(4π) for d = 3. The function u∞
s (θ , ·) : Sd−1→ C,

is called the far field pattern associated with ui(θ , ·). From the far field pattern, we
can define the far field operator F : L2(Sd−1)→ L2(Sd−1) such that

(Fg)(x̂) =
∫
Sd−1

g(θ)u∞
s (θ , x̂)ds(θ). (3)

By linearity, the function Fg corresponds to the far field pattern of the scattered field
in (1) with

ui = vg :=
∫
Sd−1

g(θ)eikθ ·x ds(θ) (Herglotz wave function). (4)

3 Factorization of the far field operator

In this section we explain how to factorize the far field operator F defined in (3).
From the Green representation theorem, computing the asymptotic behaviour of the
Green’s function as r→+∞ gives
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u∞
s (x̂) =

(
k2
∫

D
(n(y)−1)u(y)e−ikx̂ydy+

∫
Γ

[u(y)]∂+
ν(y)e

−ikx̂y ds(y)
)

(5)

for the far field pattern of us in (2). A first step towards the factorization of F is to
define the Herglotz operator H : L2(Sd−1)→ L2(D)×L2(Γ) such that

Hg = (vg|D,∂
+
ν vg|Γ). (6)

We give in Proposition 1 below a characterization of the closure of the range of H.
Set

H =
{

v ∈ L2(D) |∆v+ k2v = 0 in D
}
. (7)

and define the map Ψ : H → L2(D)×L2(Γ) such that

Ψv = (v|D,∂
+
ν v|Γ). (8)

Proposition 1. The operator H : L2(Sd−1)→ L2(D)×L2(Γ) defined in (6) is injec-
tive and R(H) = Ψ(H ).

Proof. The proof of the injectivity of H follows a classical argument based on the
Jacobi Anger expansion (apply [7, Lemma 2.1]). To establish the second part of the
claim, first we note that vg (defined in (4)) belongs to H so that R(H) ⊂ Ψ(H ).
On the other hand, classical results of interior regularity ensure that is some con-
stant C > 0 such that ||∂ν v||L2(Γ) ≤ C||v||L2(D) for all v ∈ H . This in addition
to ‖Ψv‖L2(D)×L2(Γ ) ≥ ‖v‖L2(D) allows one to show that Ψ(H ) is a closed sub-
space of L2(D)× L2(Γ). The regularity result implies that Ψ : (H ,‖ · ‖L2(D))→
L2(D)×L2(Γ) is continuous. Since the set of Herglotz wave functions is dense in
(H ,‖ · ‖L2(D)), we deduce that R(H) = Ψ(H ). ut

Next we define the operator G : R(H)→ L2(Sd−1) such that

G(v,∂+
ν v) = u∞

s , (9)

where u∞
s is the far field pattern of us, the outgoing scattered field which satisfies

∆us + k2nus = k2(1−n)v in Rd \Γ

∂±ν us = −∂±ν v on Γ.
(10)

Note that if (v,∂+
ν v) ∈ R(H) then interior regularity implies ∂+

ν v = ∂−ν v on Γ. We
also define the map T : L2(D)×L2(Γ )→ L2(D)×L2(Γ ) such that

T (v,∂+
ν v) = (k2(n−1)(v+us), [v+us]). (11)

Clearly we have F = GH. And one can check using (5) that G = H∗T so that F
admits the factorisation

F = H∗T H. (12)
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The justification of the techniques we propose below to recover the cracks will de-
pend on the properties of the operators G, T . And the latter are related to the solv-
ability of the so-called interior transmission problem which in our situation states as
follows: given f ∈ H3/2(∂D),g ∈ H1/2(∂D)

Find (u,v) ∈ L2(D)×L2(D) such that
w := u− v ∈ {ϕ ∈ H1(D\Γ) |∆ϕ ∈ L2(D\Γ)}
∆u+ k2nu = 0 in D\Γ u− v = f on ∂D

∆v+ k2 v = 0 in D ∂ν u−∂ν v = g on ∂D

∂±ν u = 0 on Γ.

(13)

We shall say that k > 0 is a transmission eigenvalue if (13) with f = g = 0 admits
a non zero solution. One can show for example that if the coefficient n is real and
satisfies 1 < n∗ < n < n∗ for some constants n∗, n∗ , then the set of transmission
eigenvalues is discrete without accumulation point and that Problem (13) is uniquely
solvable if and only if k is not a transmission eigenvalue (this will be part of a future
work). We shall say that (13) is well-posed if it admits a unique solution for all
f ∈ H3/2(∂D),g ∈ H1/2(∂D).

Proposition 2. Assume that k > 0 is not a transmission eigenvalue. Then the opera-
tor G : R(H)→ L2(Sd−1) is compact, injective with dense range.

Proof. First we show the injectivity of G. Let V = (v,∂+
ν v) ∈ R(H) such that GV =

0. Then from the Rellich lemma, the solution us of (10) is zero in Rd \D. Therefore,
if we define u = v+us, then the pair (u,v) satisfies the interior transmission problem
(13) with f = g = 0. Since we assumed that k > 0 is not a transmission eigenvalue,
we deduce that v = 0 and so V = 0.
Now we focus our attention on the denseness of the range of G. First we establish
an identity of symmetry. Let V1 = (v1,∂

+
ν v1), V2 = (v2,∂

+
ν v2) ∈ R(H). Denote w1,

w2 the corresponding solutions to Problem (10). In particular we have

∆w1 + k2nw1 = k2(1−n)v1, ∆w2 + k2nw2 = k2(1−n)v2 in Rd \Γ. (14)

Multiplying the first equation by w2 and the second by w1, integrating by parts the
difference over BR, the open ball of radius R centered at O, we obtain

k2
∫

D
(n−1)(v1w2− v2w1)dx

=
∫

∂BR

(∂ν w1w2−w1∂ν w2)ds+
∫

Γ

([w2]∂
+
ν v1− [w1]∂

+
ν v2)ds.

Taking the limit as R→+∞ and using that limR→+∞

∫
∂BR

(∂ν w1w2−w1∂ν w2)ds= 0
(w1 and w2 satisfy the radiation condition), we find the identity

k2
∫

D
(n−1)v1w2 dx+

∫
Γ

∂
+
ν v1[w2]ds = k2

∫
D
(n−1)v2w1 dx+

∫
Γ

∂
+
ν v2[w1]ds.

(15)
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Using (15), we deduce that for φ , g ∈ L2(Sd−1), we have

〈G(Hφ),g〉L2(Sd−1)

= k2
∫

D
(n−1)(Hφ +us(φ))Hgdx+

∫
Γ

[Hφ +us(φ)]∂
+
ν (Hg)ds

= k2
∫

D
(n−1)(Hg+us(g))Hφ dx+

∫
Γ

[Hg+us(g)]∂+
ν (Hφ)ds

= 〈G(Hg),φ〉L2(Sd−1).

Therefore if g∈R(G)⊥ then G(Hg) = 0. The injectivity of G and H imply that g= 0
which shows that G has dense range.
Finally, using again the estimate ||∂ν v||L2(Γ) ≤C||v||L2(D) for all v∈H , results of in-
terior regularity and the definition of H (see (6)), one can check that H : L2(Sd−1)→
L2(D)× L2(Γ) is compact. Since G = H∗T and T is continuous, we deduce that
G : L2(D)×L2(Γ)→ L2(Sd−1) is compact. ut

Proposition 3. For all V = (v,∂+
ν v) ∈ R(H), we have the energy identity

ℑm(〈TV,V 〉L2(D)×L2(Γ )) = k2
∫

D
ℑm(n)|us + v|2 dx+ k‖GV‖2

L2(Sd−1)
, (16)

where us denotes the solution of (10). As a consequence if ℑm(n)≥ 0 a.e. in D and
if k is not a transmission eigenvalue of (13), then T is injective.

Proof. Multiplying by us the equation ∆us + k2us = −k2(n− 1)(us + v) and inte-
grating by parts over the ball BR, we obtain

−k2
∫

D
(n−1)(us + v)us dx =

−
∫

BR

|∇us|2− k2|us|2 dx+
∫

∂BR

∂ν usus ds−
∫

Γ

∂
+
ν us[us]ds.

(17)

Using (17), then we find

〈TV,V 〉L2(D)×L2(Γ ) = k2
∫

D
(n−1)|us + v|2 dx−

∫
BR

|∇us|2− k2|us|2 dx

+
∫

Γ

[v+us]∂
+
ν vds−

∫
Γ

∂
+
ν us[us]ds+

∫
∂BR

∂ν us us ds.

Since ∂+
ν us =−∂+

ν v and [v] = 0 (interior regularity) on Γ, we deduce

〈TV,V 〉L2(D)×L2(Γ ) = k2
∫

D
(n−1)|us + v|2 dx−

∫
BR

|∇us|2− k2|us|2 dx

−2ℜe
(∫

Γ

[us]∂
+
ν us ds

)
+
∫

∂BR

∂ν usus ds.
(18)

The radiation condition (see (1)) implies limR→∞

∫
∂BR

∂ν usus ds= ik
∫
Sd−1 |u∞

s |2dθ =

ik‖GV‖2
L2(Sd−1)

. As a consequence, taking the imaginary part of (18) and letting R
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goes to infinity, we get identity (16). Now if TV = 0 and if ℑm(n) ≥ 0 a.e. in D,
then (16) gives GV = 0. Since G is injective when k is not a transmission eigenvalue
of (13) (Proposition 2), we deduce that T is injective. ut

4 Generalized Linear Sampling Method and Differential Linear
Sampling Method

For z ∈ Rd , we denote by Φ(.,z) the outgoing fundamental solution of the homoge-
neous Helmoltz equation such that

Φ(x,z) =
i
4

H(1)
0 (k|x− z|) if d = 2 and

eik|x−z|

4π|x− z|
if d = 3. (19)

Here H(1)
0 stands for the Hankel function of first kind of order zero. The far field

of Φ(.,z) is φz(x̂) = e−ikz.x̂. The GLSM uses the following theorem whose proof is
classical [7].

Theorem 1. Assume that the interior transmission problem (13) is well-posed. Then

z ∈ D if and only if φz ∈ R(G).

The particularity of the GLSM is to build an approximate solution (Fg' φz) to the
far field equation by minimizing the functional Jα(φz, .) : L2(Sd−1)→R defined by

Jα(φz,g) = α〈F]g,g〉L2(Sd−1)+‖Fg−φz‖2
L2(Sd−1)

, ∀g ∈ L2(Sd−1), (20)

where F] := | 12 (F +F∗)|+ | 1
2i (F−F∗)|.

Theorem 2 (GLSM). Assume that the interior transmission problem (13) is well-
posed, that the index n satisfies [ℑm(n)≥ 0, ℜe(n−1)≥ n∗ a.e. in D ] or [ℑm(n)≥
0, ℜe(1− n) ≥ n∗ a.e. in D ] for some constant n∗ > 0. Let gα

z ∈ L2(Sd−1) be a
minimizing sequence of Jα(φz, .) such that

Jα(φz,gα
z )≤ inf

g
Jα(φz,g)+ p(α), (21)

where limα→0 α−1 p(α) = 0. Then

• z ∈ D if and only if lim
α→0
〈F]gα

z ,g
α
z 〉L2(Sd−1) <+∞.

• If z ∈ D then there exists h ∈ R(H) such that φz = Gh and Hgα
z converges

strongly to h as α → 0.

Thus the GLSM, justified by this theorem, offers a way to recover D, that is to
identify the perturbation in the reference background. Note that the GLSM, contrary
to the LSM, provides an exact characterization of D. However it does not give any
information on the location of the crack Γ .
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Proof. We establish this theorem by applying the abstract result of [7, Theorem
2.10]. The latter requires that the following properties hold.

i) F = GH = H∗T H is injective with dense range and G is compact.
ii) F] factorizes as F] = H∗T ]H where T ] satisfies the coercivity property

∃µ > 0, ∀V ∈ R(H), |〈T ]V,V 〉L2(D)×L2(Γ )| ≥ µ||V ||2L2(D)×L2(Γ ); (22)

iii) V 7→ |〈T ]V,V 〉L2(D)×L2(Γ )|1/2 is uniformly convex on R(H).

Item i) is a consequence of Propositions 1, 2 and 3. Moreover, we deduce iii) from
ii) and from the fact that 〈F]g,g〉L2(D)×L2(Γ ) = ‖(F])1/2g‖2

L2(Sd−1)
(see e.g. [7]).

Therefore, it remains to show ii). To proceed, we use [7, Theorem 2.31] which
guarantees that it is true if :

• T injective on R(H);
• ℑm(〈TV,V 〉L2(D)×L2(Γ ))≥ 0 for all V ∈ R(H);
• ℜe(T ) decomposes as ℜe(T ) = T0 +C where T0 satisfies (22) and where C is

compact on R(H).

The first two items have been proved in Proposition 3. Let us focus our attention
on the last one. By definition, we have TV = (k2(n−1)(v+us), [v+us]). Set C̃V =
(k2(n− 1)us, [v+ us]− ∂+

ν v|Γ ). Using results of interior regularity, one can check
that C =ℜe(C̃) is compact. Now, define T0 :=ℜe(T )−C = (k2ℜe(n−1)v,∂+

ν v|Γ ).
Clearly one has |〈T0V,V 〉L2(D)×L2(Γ )| ≥ n∗||V ||2L2(D)×L2(Γ ) when ℜe(n−1)≥ n∗. The
case ℜe(1−n)≥ n∗ can be dealt in a similar way. ut

When one has only acces to a noisy version Fδ of F , then F],δ might not have the
required factorization and the cost function (21) must be regularized. For this aspect,
we refer the reader to [2, Section 5.2].
We now give the theoretical foundation of the DLSM which will allow us to localize
the position of the crack Γ . The DLSM relies on the comparison of the solutions of
the following interior transmission problems (without and with cracks).

P(D)

∆u0 + k2nu0 = 0 in D
∆v0 + k2v0 = 0 in D

u0− v0 = Φz on ∂D
∂ν u0−∂ν v0 = ∂ν Φz on ∂D,

PΓ (D)

∆u+ k2nu = 0 in D
∆v+ k2v = 0 in D

∂±ν u = 0 on Γ

u− v = Φz on ∂D
∂ν u−∂ν v = ∂ν Φz on ∂D,

(23)

where u0, v0, u, v∈ L2(D), u0−v0 ∈H2(D) and u−v∈H1(D\Γ) is such that ∆(u−
v)∈ L2(D\Γ ). We split the domain D into two kinds of connected components (see
Fig. 2): The ones containing cracks are listed by (D j

Γ
) j; others are listed by (D j

0) j.
And we set DΓ := ∪ jD

j
Γ

and D0 := ∪ jD
j
0 so that D = DΓ ∪D0.

Theorem 3. Assume that Γ is a part of the boundary of a domain Ω such that ∂Ω

is analytic. Assume that n is analytic in DΓ and does not vanish. Assume also that
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D1
0

D2
0

D1
Γ

Fig. 2: We split D into two families of connected components.

k is not a Neumann eigenvalue for −n−1∆ in Ω and is such that both P(D) and
PΓ (D) (see (23)) are well-posed.

i) If z ∈ D0 then v = v0 in D. ii) If z ∈ DΓ then v 6= v0 in DΓ .

Proof. i) Let z ∈ D0. In D0, the equations for P(D) and PΓ (D) coincide. By
uniqueness of the solution for these problems, we deduce that v = v0 in D0. On the
other hand, one observes that (0,−Φz) satisfies the equations of P(D) and PΓ (D)
in DΓ . As a consequence, by uniqueness of the solution for these problems, we also
have v = v0 =−Φz in DΓ .
ii) Now let z∈DΓ . We wish to show that v 6= v0 in DΓ . We proceed by contradiction
assuming that v = v0 in DΓ . Define U such that U = u−u0 in DΓ \Γ and U = 0 in
Rd \DΓ . Since U = ∂νU = 0 on ∂DΓ , from the unique continuation principle, we
find U = 0 in Rd \Γ and so ∂±ν u0 = 0 on Γ (because ∂±ν u = 0 on Γ). Furthermore the
regularity of n implies that ∂±ν u0 is analytic on ∂Ω and we conclude that ∂±ν u0 = 0
on ∂Ω . Since we assumed that k is not a Neumann eigenvalue for −n−1∆ in Ω , we
deduce that u0 = 0 in Ω , and by unique continuation, u0 = 0 in DΓ . Thus we must
have v0 =−Φz in DΓ which contradicts the fact that u0− v0 ∈ H2(D). ut

Now we consider a first heterogeneous medium without crack with a perturbation
of the reference background supported in D modeled by some index n, and a second
medium with the same n but with an additional crack inside D. The corresponding
far field operators are denoted respectively F0 and F1. Then for j = 0,1, let gα

j,z refer

to the sequences introduced in the statement of Theorem 2 with F]
j = |

1
2 (Fj +F∗j )|+

| 1
2i (Fj−F∗j )|. We also set for j = 0,1

A α
j (z) = 〈F]

j gα
j,z,g

α
j,z〉L2(Sd−1); Dα

j (z) = 〈F
]
j (g

α
1,z−gα

0,z),(g
α
1,z−gα

0,z)〉L2(Sd−1). (24)

The combination of Theorem 2 and 3 leads to the following result.

Theorem 4 (DLSM). Assume that k, n and Γ are as in Theorem 3 and that n also
satisfies the assumptions of Theorem 2. Then for j = 0 or 1[

z ∈ D0
]
⇒
[

lim
α→0

Dα
j (z) = 0

]
and

[
z ∈ DΓ

]
⇒
[

0 < lim
α→0

Dα
j (z)<+∞

]
.

Proof. As explained in the proof of Theorem 2, F]
1 admits a factorization of the

form H∗T ]
1 H where T ]

1 is continuous and 〈T ]
1 ·, ·〉 is coercive. According to the study
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of crack-free inhomogeneous medium a same factorization stands for F0 involving
an operator T ]

0 that have the same properties of T ]
1 . This implies (for j = 0 or 1) the

existence of two positive constants κ and K such that

κ‖H(gα
1,z−gα

0,z)‖2
L2(D) ≤Dα

j (z)≤ K‖H(gα
1,z−gα

0,z)‖2
L2(D). (25)

Now for z ∈ D, if we denote (u0,v0) (resp. (u1,v1)) the solution of P(D) (resp.
PΓ (D)), then Theorem 2 and the GLSM for the crack-free inhomogeneous medium
(see the justification in [7]) guarantee that lim

α→0
‖H(gα

1,z−gα
0,z)‖= ‖H(v−v0)‖. Then

the result follows from Theorem 3. ut

From Theorems 2 and 4, one can design indicators for D and DΓ . Set for j = 0 or 1,

IGLSM(z) = lim
α→0

1
A α

1 (z)
and IDLSM

j (z) = lim
α→0

1

A α
0 (z)

(
1+ A α

0 (z)
Dα

j (z)

) . (26)

For these indicators, one can show the following theorem which allows one to iden-
tify the connected components of D in which some cracks have appeared.

Corollary 1. Under the assumptions of Theorem 4, we have for j = 0 or 1

• IGLSM(z) = 0 in Rd \D and IGLSM(z)> 0 in D.

• IDLSM
j (z) = 0 in Rd \DΓ and IDLSM

j (z)> 0 in DΓ .

5 Numerical results

To conclude this work, we apply the GLSM and the DLSM on simulated back-
grounds. All backgrounds have the same shape D constituted of three disjoint disks
of radius 0.75 and of index n = 1.5. They differ from one to another in the distri-
bution of cracks inside the disks. Admittedly, the straight cracks appearing in the
backgrounds are not a portion of the boundary of an analytic domain. However, we
expect that our algorithm remains robust when this theoretical assumption is not
satisfied. For each background we generate a discretization of the far field operator
F by solving numerically the direct problem for multiple incident fields ui(θp) with
wave number k = 4π . Then we compute the matrix F = (u∞

s (θp, x̂q))p,q for θp, x̂q

in {cos( 2lπ
100 ),sin( 2lπ

100 ), l = 1..100} (somehow we discretize L2(S1)). Finally, we add
random noise to the simulated F and obtain our final synthetic far field data Fδ with
Fδ

pq = Fpq(1+σN). Here N is a complex random variable whose real and imagi-
nary parts are uniformly chosen in [−1,1]2. The parameter σ > 0 is chosen so that
‖Fδ −F‖= 0.05‖Fδ‖.
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5.1 GLSM

To handle the noise δ added on the far field data, we use a regularized version of the
GLSM consisting in finding the minimizers gα,δ

z of the functional

g 7→ Jα,δ (φz,g) = α(|〈F]δ g,g〉L2(Sd−1)|+δ‖Fδ‖||g||2L2(S2))+‖F
δ g−φz‖2

L2(Sd−1)
,

where F]δ := | 12 (F
δ +Fδ∗)|+ | 1

2i (F
δ −Fδ∗)|. We fit α to δ according to [2, Section

5.2]. The new relevant indicator function for the regularized GLSM is then given by

Iα,δ
GLSM(z) =

1
A α,δ (z)

where A α,δ (z) = 〈F]δ gα,δ
z ,gα,δ

z 〉L2(Sd−1)+δ‖Fδ‖‖gα,δ
z ‖2

L2(Sd−1)
.

Fig. 3 shows the results of GLSM indicator function z 7→ Iα,δ
GLSM(z) for two different

configurations where the second one is obtained from the first one by adding a crack
to the third component. The two other components contain the same crack. One ob-
serves that GLSM is capable of retrieving the domain D for each configuration. We
also observe how the behavior of the indicator function is different inside the third
component. This is somehow what the DLSM exploits to isolate the component
where a defect appears and this is what is discussed next.

Fig. 3: Simulated backgrounds on the left and associated GLSM indicator function z 7→ Iα,δ
GLSM(z)

on the right.
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5.2 DLSM

Given two far field data Fδ
0 and Fδ

1 , we respectively define F]δ
0 , gα,δ

0,z , A α,δ
0 (z) and

F]δ
1 , gα,δ

1,z , A α,δ
1 (z) associated to each data as described in the previous paragraph.

We also define

Dα,δ (z) = 〈F]
0 (g

α,δ
1,z −gα,δ

0,z ),(g
α,δ
1,z −gα,δ

0,z )〉L2(Sd−1).

Then, according to (26), the DLSM indicator is given by

Iα,δ
DLSM(z) =

1

A α,δ
0 (z)

(
1+ A α,δ

0 (z)
Dα,δ (z)

) .
The behavior of the DLSM indicator function is illustrated below for several sce-
narios shown in Fig. 4-7. In each figure is presented from left to right, the initial
background (associated with Fδ

0 ), the damaged background (associated with Fδ
1 )

and the DLSM indicator function z 7→ Iα,δ
DLSM(z). As expected, the latter allows us to

identify for all scenarios the component(s) DΓ where (additional) cracks appeared.
We also remark that it slightly accentuates the border of D0. But this effect is not
explained by our theory and it does not contradict it: Our theoretical result does not
stipulate that the indicator function is “uniformly” close to 0 outside DΓ .

Fig. 4: A scenario for DLSM simulating the emergence of cracks in two components of a defect
free background.
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Fig. 5: A scenario for DLSM simulating the emergence of a crack in a healthy component of an
already damaged background.

Fig. 6: A scenario for DLSM simulating the emergence of additional cracks in a healthy and a
damaged components of an already damaged background.

Fig. 7: A scenario for DLSM simulating the increase of the crack size in one component of an
already damaged background.

6 Conclusion

We analyzed the DLSM to identify emergence of cracks embedded in an unknown
background and image defective components from differential measurements of far
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field data at a fixed frequency. The analysis is based on the justification of the GLSM
for backgrounds with cracks which necessitates the study of a special interior trans-
mission problem and the derivation of specific factorizations of the far field op-
erator. The numerical tests on toy problems show that our method is reliable for
different scenarios simulating the appearance of cracks between two measurements
campaigns. This is a first step before addressing practical problems where the issues
of limited aperture data and/or highly cluttered backgrounds should be solved.
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