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d’échantillonnages et des signatures

spectrales pour la résolution de
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Spécialité de doctorat : mathématiques appliquées
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également soutenu lors de mon cursus, je pense à Mme Thieullen, M. Moussa et M. Adelman en
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General introduction

English version

State of the art

Research related to inverse acoustic and electromagnetic scattering problems has undergone
several developments since the first work on sonar and radar in the early 20th century. These two
techniques, that allow to detect a target and estimate its position, became quite well mastered
during the inter-war period. Subsequently, the possibility of determining the nature of the
target, for example to distinguish a submarine from a whale, was quickly considered. First
attempts in this direction encountered several difficulties. Firstly, this identification problem is
non-linear due to possible multiple reflections (reflections between the components of the target,
diffusion, etc.). A second complication lies in the ill-posedness of the problem. For instance
small differences in the noise level in the data may lead to very different solutions. These
difficulties have been overcome on the one hand thanks to technical advances in the computer
industry facilitating access to increasingly high-performance computing machines, and on the
other hand thanks to the development of the mathematical theory of inverse problems since
the 1960s. Among the long list of contributors to the theory of inverse problems we mention
Tikhonov [118, 117], D.L. Phillips [107] and Keith Miller [100]. These advances have provided
the opportunity to develop a myriad of inversion techniques that have had an impact in various
fields such as geophysics, medicine and non-destructive testing [17, 2, 48, 50].

The physical theory of scattering problems was already at maturity before the invention of the
radar and the sonar. The illumination of an object with an incident wave produces a scattered
field which is fully described by the Maxwell equations in the case of electromagnetic waves, and
by the Helmholtz equation in the case of acoustic waves. More precisely the scattered field is the
solution to a Partial Differential Equation (PDE) with the incident field as right hand side. The
PDE depends on parameters related to the physical properties of the obstacle such as the shape
and according to the problem under consideration, the refractive index, the Lamé coefficients,
the conductivity, the permittivity, etc. The problem of determining the scattered field for a
given incident wave and from the knowledge of the obstacle and its physical parameters, or in
other words solving the PDE, is referred to as the direct problem. The direct problem is well
posed and there are many ways to solve it numerically. One of the most efficient numerical
approximation, the boundary elements method, is based on so-called integral equation methods.
The integral equation methods consist in reformulating the PDE, which is initially formulated in
the whole space, into an integral equation defined on the obstacle boundary. We refer the reader
to [102] for an overview of integral equation methods. Implementations of the boundary elements
method can be found in [40] for both acoustic and electromagnetic problems. Conversely to the
direct problem, when the physical parameters are unknown, the problem of retrieving the latter
from at least one pair of the solution and the corresponding right hand side of the PDE, is
referred to as the inverse problem. The active procedure allowing to collect the data to solve
the inverse problem is simple: interrogative waves are sent into the probed domain and the

1



2 General introduction

resulting scattered fields are measured via receivers. When the distance between the receiver
and the target is of the order of the wavelength, then the measurements are referred to as near
field data. If the distance is large enough, we rather use the far field pattern, a coefficient which
appears in the first order of the asymptotic development of the scattered field with respect to
the distance to the source location. The far field depends on the direction of observation. If we
moreover consider the far fields obtained for incident plane waves, it is obtained a data which
hence depends on two variables on the unit sphere. There are also other possibilities for placing
the receivers, for example they can be arranged on a plane or on the surface of the probed
domain (while probing waveguides for instance). The primary issue before trying to solve the
inverse problem is to know if the accessible data allows to characterize the parameters of interest.
Positive answers are given for the problem of finding the shape of the obstacle, the refractive
index, but also for many other problems [115, 75, 84, 108, 58, 97]. In the following, we review
some inversion methods using far field pattern.

For a long time, because of the difficulty of the problem, it has been more convenient to
distinguish two categories of inverse problems. The inverse obstacle problem which is dedicated
to inverse problems related to impenetrable obstacle, and the inverse medium problem which
is devoted to inverse problems related to penetrable inhomogeneities. This distinction is due
to the fact that the first inversion algorithms were strongly based on the mathematical model
describing the scattering problem. A first approach has been to linearize the problem, reducing
it to the problem of solving a linear integral equation of the first kind. This approach is known
as the Kirschoff and the physical optics approximation for the inverse obstacle problem, and
as the Born and Rytov approximation for the inverse medium problem. These approximations
are attractive because of their mathematical simplicity, and have proved to be efficient for
many applications such as tomography [14, 39, 52, 91] and synthetic aperture radar [36, 16].
However, the linearized models have an important weak point: since the nonlinearity of the
scattering problem is ignored, they are not guaranteed to be acceptable in complex media.
Among the first works preserving the non linearity of the inverse problem we can mention
[74, 120], which have been followed by many others that moreover addressed the ill-posedeness
nature of the inverse problem [64, 78, 67, 65, 98, 57]. All of the proposed techniques in these
works belongs to the class of iterative methods which require to solve the direct problem several
times, by implementing optimization techniques such as least squares methods [116], Newton’s
method [68, 69, 70], quasi-Newton methods [51], level set methods [21]. More precisely, starting
from some initial guess for the target, updates of this guess are obtained by solving multiple
times the direct problem in order to fit to the observable data. Although these techniques
give good results, it is difficult to use them for industrial applications. Indeed, they are very
expensive in terms of cpu time and hence cannot be used in real-time imaging applications
e.g. monitoring the evolution of a material, medical application that requires the presence of
the patient, etc. Another major disadvantage of these methods is that their implementation
requires strong a priori information on the object, such as the number of connected components,
in order to choose a good parameterization and initialization. A new class of inversion techniques,
such as the sampling and probe methods, tried to relax the required a priori information and
reduce the computational cost, at the price of extracting less information from the probed
material. Typically, these methods do not require to solve the direct problem. Instead, they
define some indicator function which provides information on the location, shape and properties
of the unknown object. To mention some of these methods, we can cite the probe method [73],
the singular-source method [12] and the Linear Sampling Method (LSM) [46]. A survey of these
methods can be found in [109].

We are interested in more recent techniques that have improved the first version of the LSM
while extending its range of applications. The LSM can be referred to point sampling methods;
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it provides a scheme to decide if a chosen point z ∈ R3 is in the interior of the scatterer or
not. The original formulation of the LSM is based on the knowledge of the far field operator
F , an integral operator with the far field pattern being its kernel. According to the uniqueness
results mentioned above, F contains all the information on the probed object. The LSM more
particularly intends to extract these information from the spectrum of F . In a few words, it
relies on the solvability of the far field equation, a linear ill-posed equation involving F and
whose right hand side depends on the parameter z ∈ R3. The study of this equation yields an
indicator function for the support of the obstacle. However, the numerical implementation of
this method, relying on a Tikhonov regularization of the far field equation, does not give access
to the exact predicted indicator function. Despite this weak point, the LSM has been attractive
because various numerical simulations proved it can be reliable in a first approach to localize
an inhomogeneity and/or determine the number of its connected components. Furthermore, the
fact that the described algorithm can be used regardless to the nature of the probed domain is
also a significant advantage over optimization methods. The theoretical weak point of the LSM
is addressed by the well known Factorization Method [79, 80]. It roughly consists in replacing
the far field equation by another one, which yields to a numerically tractable indicator function.
FM first proved its effectiveness for impenetrable obstacles [79], then for inhomogeneous media
[80, 81]. Since then, FM has been extended to numerous academical inverse problems [83]. More
recently, many works contributed to justify FM for more complex backgrounds, allowing one to
implement it in practical applications such as geophysics or nondestructive testing [72, 71]. We
also mention the articles [86, 15, 122] where scatterers made of both impenetrable obstacles
and inhomogeneous medium are considered. These works raise new questions concerning the
possibility to distinguish the impenetrable obstacle from the inhomogeneous medium. More
recently, an alternative solution to overcome the weak point of the LSM has been provided by
the Generalized Linear Sampling Method [10]. The classical Tikhonov regularization of the far
field equation is replaced by new regularization schemes which provides an exact characterization
of the support of the obstacle. Furthermore, the GLSM has also broaden the application of the
LSM by identifying the appearance of defects in a material [9, 8].

From the beginning of the LSM, which was first studied for Dirichlet obstacles, it was pointed
out that some specific values of the wavenumber k should be avoided. Indeed, the justification
of the method requires that at the considered wavenumber, all far fields obtained for all incident
plane waves must be dense in the space of the square integrable functions on the unit sphere of
R3. It is shown in [46] that this result is only valid when k2 is not a Dirichlet eigenvalue for the
Laplace operator in the obstacle support. We illustrate in Figure 1 the fact that this restriction
on the wavenumber is not superfluous. For a Dirichlet obstacle made of two non intersecting
disks of radius r1 = 1 and r2 = 2, we generated two set of far field data respectively obtained
with slightly different wavenumbers. The image on the left shows the LSM results for k1 = 4
and the one on the right for k2 = 4.33. According to the principle that waves with wavelength
λ = 2π/k should allow to recover obstacles that have dimensions of the same order of λ, the
presented results are doubly striking. First, in the image on the right, the small disk is better
recovered than the large disk. Secondly, in the image on the left, the reconstruction of the
obstacle is sharper while the wavelength used is larger. This undesired effect is due to the fact
that k2

2 corresponds to a Dirichlet eigenvalue of the Laplace operator on the disk of radius r2 = 2.
The adaptation of the LSM to penetrable obstacles [47, 77] led in a similar way to a restriction
on the wavenumber. The latter must be chosen so that the so-called Interior Transmission
Problem (ITP), a boundary value problem coupling two PDEs on a domain corresponding to
the support of the inhomogeneity, is well posed. Thus the equivalent of Dirichlet eigenvalues for a
penetrable medium correspond to the spectrum of the ITP which are referred to as Transmission
Eigenvalues (TEs). Therefore, one of the main issues was to show that the set of TEs is at most
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Figure 1: Implementation of the LSM to find a Dirichlet obstacle consisting of two non intersecting
disks r1 = 1 and r2 = 2. The reconstruction is conducted for two sets of far fields generated at different
wavenumbers k1 = 4 (left) and k2 = 4.33 (right). k2

2 corresponds to the first Dirichlet eigenvalue of
the large disc (to the nearest hundredth). In the image on the right, the inclusion in the top right is
abnormally poorly reconstructed.

discrete in order to ensure the efficiency of the LSM at almost every frequency. This has first
been proved for spherically stratified media [47], for which the problem can be studied through
algebraic equations involving Bessel functions. This result has then been proved in a more
general case in [43, 113]. The question of the existence of TEs was considered much later and
for a long time, the only known result was that real TEs do not exist for dissipative media
(i.e. with complex valued refractive index). Answering the question of existence is not easy
since the ITP is neither elliptic nor self-adjoint. Moreover, the discrete nature of the TEs was
sufficient to accredit the use of the LSM. Some recent works brought the need for showing the
existence of TEs: it has been established the possibility of computing TEs from far field data
[28] and obtaining qualitative information on the physical properties of the material surveyed
from the knowledge of TEs [31, 25]. Proof of the existence of at least one real TE in the general
case is provided in 2008 by Päivärinta and Sylvester [104] assuming that the refractive index is
sufficiently large. This result is complemented in the work of Cakoni, Gintides and Haddar [33],
where it is demonstrated the existence of an infinity of real TEs while removing the condition
on the refractive index.

After these results, a growing attention has been given to TEs and also to their use for
solving the inverse problem. The assumption on the refractive index have been constantly
relaxed. For long time, it has been required to exclude material with changing sign contrast,
whereas such problems arise in practical application, for instance in thermoacoustic tomography
[61]. The study of ITP with cavities [26] has been the first to cope with this difficulty. The
use of the notion of T-Coercivity which have been initially developed for problems involving
metamaterials [38] has significantly weakened the condition on the contrast. Indeed, it has
been shown in [37] the discreteness property of TEs with the only condition that the contrast
does not change in a vicinity of the boundary. The same assumption is made in [112] where
the refractive index is moreover allowed to be complex valued. In the latter work, a complete
characterization of the whole spectrum of the ITP (including complex TEs) is made. To conclude
on the properties of TEs, we also mention the Weyl-type asymptotic estimates for the counting
function [111, 56, 89, 90, 105] and the results on the localization of TEs in the complex plane [60,
89, 106]. Finally, the different developed frameworks to study ITP problems have been extended
to the Maxwell equations [53, 35, 49]. In parallel to all these works, several contributions
have proven the relevance of using TEs to solve the inverse problem. First of all, the theoretical
justification of the determination of TEs which have been relying on the LSM was not satisfactory
because of the mentioned inherent weak point of the LSM. The determination of TEs has been
enhanced by new methods such as the GLSM and the inside-outside duality [10, 85, 93, 94, 95].
Secondly, many works proposed techniques using TEs to find estimates on the material properties
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[22, 31, 63, 66, 32]. We also mention the interesting work on invisibility [54] which makes use
of the existence of TEs to propose applications in stealth technology. The physical coefficients
of a material are prescribed in order to make it invisible to any observer trying to detect it
with far field measurements. The recent works on the use of TEs for the inverse problem has
focused on simplifying the link between TEs and the physical parameters. This initiative is
explained by the fact that recovering sharp information from TEs is not an easy task, and
hence limits the information that can be obtained. The main difficulty of using TEs relies in
the fact that they cannot be viewed as the spectrum of a selfadjoint operator. To overcome
this difficulty, it was suggested in [6, 30, 5, 41] to rather consider a modified spectrum that
we refer to as Relative Transmission Eigenvalues (RTEs) and that can still be computed from
far field data. The idea consists in introducing an artificial background that can be chosen
by the observer. The RTEs correspond to the spectrum of a new transmission problem, the
Relative Transmission Problem (RTP), which indicates that at RTEs, there exists an incident
field such that the far field resulting from the effective background and the one resulting from
the artificial background are arbitrarily close. The advantage of using RTEs is that they depend
on the artificial background which can be fit as desired, in accordance with the problem under
consideration. Hence choosing the appropriate setting for the artificial background components,
such as the position, the geometry, whether they are penetrable or not and the corresponding
refractive index or boundary conditions, can greatly simplify the link between the RTEs and the
parameters of interest.

Outline of the thesis

We are interested in the use of ultrasound to detect and localize the presence of undesired
inclusions in an investigated material. This issue has its importance in various fields. To cite
some relevant examples, we can mention the monitoring of the level of degradation of certain
structures from civil engineering such as bridges, buildings, rails; the detection of anomalies
in biological tissues in order to diagnostic diseases; the probing of soils when searching for
instance natural or anthropogenic cavities, networks, buried objects or underground anomalies.
Many scattering problems can be modeled by the equation of linear elasticity, which is usually
valid when strains and stress levels are small. Considering only the longitudinal waves, the
elasticity equation can be simplified into the Helmholtz equation. We rely on the latter equation
and measurements of the far field operator to develop inversion algorithms for our monitoring
problem. The types of defect we are interested in are impenetrable obstacles. Both cases when
the latter has a non empty interior and when it has an empty interior are considered. More
attention is paid to sound hard defects which correspond to obstacles with Neumann boundary
conditions since it is a rather realistic model for cracks. The chosen working frequency depends
on the size of the defect we want to detect, in order to capture the signature of the defect in
the measured data. A classical difficulty while imaging heterogeneous media is that in case of
high contrast or presence of inclusions before the degradation, it is difficult to distinguish the
contribution of the defect in the collected data. A solution to this difficulty has been proposed
by the Differential Linear Sampling Method (DLSM) [9]. This method has originally been set
up to identify a modification in the refractive index in an inhomogeneity, and reasonably rely
on differential measurements, i.e. both measurements before and after the appearance of the
defect. We adapt the DLSM for our purpose in chapter 2 where sound hard defects of empty
interior are considered, and in chapter 4 where sound hard defects of non empty interior are
considered. The DLSM relies on the results of the GLSM whose proper performance, as stated
above, requires the well posedness of the ITP. Consequently, the adaptation of the DLSM to our
problem has led us to study two different ITPs. The first ITP corresponds to inhomogeneities
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with sound hard obstacles of empty interior which is studied in 3. The second ITP corresponds
to inhomogeneities with sound hard obstacles of non empty interior which is studied in 5. In
a final chapter 6, we develop two techniques allowing to monitor highly damaged backgrounds
made of small crack networks. We more precisely provide a way to estimate what we define
as local crack density. Our first approach uses the spectrum of a RTP and require far field
data measurements at multiple frequencies. However this first technique is expensive in terms
of required data but also in cpu time. Therefore we suggest another alternative which mixed
ideas from the DLSM and the use of artificial backgrounds.

Chapter 1 : Sampling methods

In this chapter, we provide a brief overview of the Linear Sampling Method and two versions of its
generalization, namely the Factorization Method and the Generalized Linear Sampling Method.
We introduce the far field operator and while presenting the mentioned sampling methods, we
insist on the fact that they mainly deal with the spectrum of F to recover the shape of the
inhomogeneity. The Interior Transmission Problem which is closely related to these methods is
also introduced and we present the method provided by the GLSM to compute the transmission
eigenvalues. We illustrate these concepts on the simple case where the inhomogeneity embedded
in R2 has a constant refractive index and whose support is a disk D. This setting allows one to
carry explicit computations involving Bessel functions. Consequently, an exact description of the
spectral properties of F can be derived, allowing one to explicitly write the indicator functions
of D provided by the different considered sampling methods. Therefore it is possible to compare
the accuracy of these methods (at least numerically). We also recall the two advances provided
by the GLSM towards the possibility of retrieving information from ITP. Firstly, GLSM provides
an exact determination of TEs from far field data. Secondly, the regularized solution of the far
field equation which is defined in the framework of the GLSM, converges to the solution of
ITP. Relating the error made in the computation of TEs with respect to the noise level seems
challenging, although important because of the increasing interest in using TEs to solve the
inverse problem. Determining the rate of convergence of the regularized solution of the GLSM
to the solution of the transmission problem seems also to be a difficult task. This information
is important as it would allow a better understanding of the behavior of the DLSM (choice of
the the regularization parameter with respect to noise, interpretation of the produced images).
For the particular example studied in this chapter, we provide a lower bound of this rate of
convergence.

Chapter 2 : Detecting sound-hard cracks in isotropic inhomogeneities

We consider the problem of detecting the presence of sound-hard cracks in a non homogeneous
reference medium from the measurement of multi-static far field data. First, we provide a
factorization of the far field operator in order to implement the Generalized Linear Sampling
Method (GLSM). The justification of the analysis is also based on the study of a special interior
transmission problem. This technique allows us to recover the support of the inhomogeneity of
the medium but fails to locate cracks. In a second step, we consider a medium with a multi-
ply connected inhomogeneity assuming that we know the far field data at one given frequency
both before and after the appearance of cracks. Using the Differential Linear Sampling Method
(DLSM), we explain how to identify the component(s) of the inhomogeneity where cracks have
emerged. The theoretical justification of the procedure relies on the comparison of the solutions
of the corresponding interior transmission problems without and with cracks. Finally we illus-
trate the GLSM and the DLSM providing numerical results in 2D. In particular, we show that



English version 7

our method is reliable for different scenarios simulating the appearance of cracks between two
measurements campaigns.

Chapter 3 : The interior transmission problem for penetrable obstacles with sound-
hard cracks

In this chapter we investigate the ITP for isotropic inhomogeneities with sound-hard cracks
inside. This problem has been introduced in Chapter 2 while extending the Generalized Linear
Sampling Method to isotropic inhomogeneities containing sound-hard cracks. Following the
same approach proposed in [33], we show the existence of a discrete infinite set of real TEs,
provided that the refractive index n ∈ L∞(D) is bounded and satisfies n > 1. In this case we
also derive Faber-Krahn type inequalities for the TEs. When n < 1, the framework we develop
do not allow to show the Fredholm property of the ITP, preventing us to answer the question of
the discreteness properties nor the existence of TEs. We point out that in the paper [32], where
the case of inhomogeneities containing sound soft obstacles is studied, a similar restriction on
the refractive index occurred as their developed framework allowed to study the case n < 1 but
not the case n > 1. Similarly to more classical situations, we also show that real TEs do not
exist if the considered isotropic medium containing the sound-hard crack is dissipative.

Chapter 4 : Detection of sound-hard obstacles in inhomogeneous media

We consider the problem of identifying sound-hard defects of non empty interior inside an un-
known inhomogeneous medium from far field data at fixed frequency. As mentioned, we adapt
for this purpose the results of the DLSM which requires two set of measurements done before
and after the occurrence of the defect. The theoretical justification of the DLSM relies on the
comparison of the solutions of two Interior Transmission Problem, the one corresponding to the
healthy material and the one corresponding to the damaged material. The use of the DLSM in
practice also requires to compute these solutions from the data. The latter can be done by the
use of the Generalized Linear Sampling Method (GLSM) [10], which consists in approximating
solutions of the far field equation with a particular penalty term. On the one hand, the GLSM
requires a factorization of the far field operator, similar to the one used for the Linear Sam-
pling Method. On the other hand, it requires the penalty term to be equivalent to the Herglotz
operator and to satisfy a convexity property. Therefore we have chosen to use the F] operator
in the penalty term which is shown to satisfy the factorization similar to the one required for
the so called F] Method. Furthermore it should be noted that since F] is positive definite, the
optimization of the cost functional is greatly simplified and do not require any iterative method.
As a product of our analysis, we have also extended the factorization method to this setting
which yields a reconstruction procedure for the whole background. The same remark stands for
the use of GLSM.

Chapter 5 : The Interior Transmission Problem for inhomogeneities with sound
hard inclusions

In this chapter is studied the interior transmission problem for isotropic inhomogeneities con-
taining sound hard obstacles. This chapter differs from chapter 3 in that the obstacles considered
are now of non empty interior. We investigate the classical issues related to the study of interior
transmission problems that are the Fredholm property, the discreteness of the set of transmission
eigenvalues and the existence of positive transmission eigenvalues. The first approach we con-
sider relies a fourth order formulation of the interior transmission problem. This approach has
been introduced in [113] for the study of isotropic inhomogeneities and has been successfully used
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in many other works [33, 34, 104, 32]. However we have encountered several difficulties with this
approach. Finding the right weak formulation has not been easy and we have been compelled to
set a variational space which depends on the parameter k. We treated this situation by adapting
the works [26] which first introduced such formulations when studying the ITP with cavities.
We notice that such difficulty did not arise in the study of ITP related to inhomogeneities with
sound soft inclusions inside [32]. The developed framework allows us to prove that the set of
TEs is at most discrete, but only if the inclusion is big enough and provided that the refractive
index n satisfies n > 1. However we could not conclude about the existence of TEs with this
framework and we explain why our various attempts failed. We propose another approach in
order to relax the assumption on n and remove the condition on the size of the inclusion to
obtain the discreteness of the set of TEs. The latter approach relies on the properties of the
Dirichlet-to-Neumann operator.

Chapter 6 : Local estimates of crack densities in crack networks

We consider the problem of identifying a set of cracks Γ embedded in some homogeneous back-
ground from measured far field data at multiple frequencies generated by acoustic waves. First
of all we point out that this framework do not allow to define usual TEs since a crack has empty
interior. Working with an artificial sound-soft (resp. sound-hard) obstacle Ω, we show that it
is possible to define RTEs. The latter mainly correspond to the Dirichlet eigenvalues (DEs)
(resp. Neumann eigenvalues (NEs)) for the Laplace operator in Ω, with the exception that the
corresponding eigenfunction u satisfies the additional condition σ(u) = 0 on Γ, where σ denotes
the boundary conditions on Γ. Hence, each RTE is a perturbation δ(Ω,Γ) of a DE (resp. NE)
which encodes the additional condition satisfied by the associated eigenfunction. In addition
to this, we show that RTEs can be determined from the data. For this purpose, we adapt the
framework of the use of GLSM to compute TEs [10]. Consequently, it is possible to measure
the difference δ(Ω,Γ) between the computed RTEs and the known DEs (resp. NEs). In the
case of sound-soft cracks, sound-hard cracks or impedance cracks, we prove that Γ 7→ δ(Ω,Γ) is
monotonous with respect to Γ ∩ Ω for the inclusion order. This result led us to use δ(Ω,Γ) as
an estimator of |Γ ∩ Ω|: we refer this quantity to the localized crack density in Ω. At last, an
indicator function of the local crack density at each point is obtained by repeating this process
and computing (δ(Ω + t,Γ))t for a collection of artificial backgrounds (Ω + t)t∈A⊂R3 , made of
translations of Ω, which scans the probed area. The resolution of this method is fixed by the
size of Ω. Numerical simulations carried in the a two dimensional setting validates expected
behavior of this indicator function.

A weak point to the method described above is the high numerical cost of the computations
of the RTEs associated to one artificial background. Since increasing the resolution (reduce the
size of Ω) requires to increase the number of considered artificial backgrounds, imaging with
high resolution may be prohibitive. To bypass this drawback, we suggest another method which
requires to deal with far field data at only one fixed frequency. This alternative approach mix
the notion of artificial background with the ideas of the Differential Linear Sampling Method
[9]. Indeed we consider the same Ω of the previous paragraph and compare two functions u and
ũ which are the solutions of two different problems. ũ is the solution of the Helmholtz equation
in Ω whereas u is the solution of RTP, which is the Helmholtz equation on Ω \ Γ. On the one
hand, ũ can be computed independently to the data. On the other hand, we show that when the
wavenumber is not a RTE, the GLSM can be used to approximate u. Consequently it is possible
to detect the presence of the crack by computing the difference between u and ũ which is non
zero when Γ ∩ Ω 6= ∅. Repeating this procedure for a collection of artificial backgrounds allow
in principle to determine the position of the crack. On the presented numerical simulation, it
seems that this indicator moreover reveals the crack density of the probed medium.
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État de l’art

La recherche liée aux problèmes inverses de diffraction acoustique et électromagnétique a été
très active depuis les premiers travaux sur le sonar et le radar au début du XXe siècle. Ces
deux techniques permettent de détecter une cible et d’estimer sa position. Toutes deux ont
été plutôt bien mâıtrisées pendant l’entre-deux-guerres. Par la suite, le problème de savoir
s’il était possible d’identifier la cible, pour distinguer un sous-marin d’une baleine par exem-
ple, a été tout naturellement envisagé. Les premières tentatives de réponse se sont heurtées à
plusieurs difficultés. Premièrement, ce problème d’identification est non linéaire en raison des
éventuelles réflexions multiples (réflexions entre les différentes composantes de la cible, diffu-
sion, etc). Deuxièmement, le problème est mal posé, dans le sens où de légères différences sur
les données, liées aux incertitudes des mesures par exemple, peuvent conduire à des solutions
très différentes. Ces difficultés ont été surmontées d’une part grâce aux progrès techniques de
l’industrie informatique facilitant l’accès à des machines de calcul de plus en plus performantes,
et d’autre part grâce au développement de la théorie mathématique des problèmes inverses
depuis les années 1960. Pour ne citer que quelques uns des contributeurs de cette théorie, nous
mentionnons Tikhonov [118, 117], D.L. Phillips [107] et Keith Miller [100]. Ces avancées ont
permis de développer une myriade de techniques d’inversions qui ont eu un impact dans divers
domaines tels que la géophysique, la médecine et le contrôle non destructif [17, 2, 48, 50].

Les lois qui régissent le phénomène de diffraction étaient déjà bien établies avant l’invention
du radar et du sonar. Lorsqu’une onde dite incidente rencontre un obstacle, il résulte de leur in-
teraction un champ diffracté. Ce dernier est entièrement décrit par les équations de Maxwell dans
le cas des ondes électromagnétiques et par l’équation de Helmholtz dans le cas des ondes acous-
tiques. Plus précisément, le champ diffracté est la solution d’une équation aux dérivées partielles
(EDP) ayant pour terme source le champ incident. L’EDP dépend de plusieurs paramètres qui
sont liés aux propriétés physiques de l’obstacle tels que sa forme et selon le problème considéré,
l’indice de réfraction, les coefficients de Lamé, la conductivité, la permittivité, etc. Le problème
consistant à déterminer le champ diffracté résultant d’une onde incidente donnée tout en connais-
sant les paramètres physiques de l’obstacle, ou en d’autres termes résoudre l’EDP, est qualifié de
problème direct. Ce problème est bien posé et il existe de nombreuses approches qui permettent
de le résoudre numériquement. L’une des approximations numériques les plus efficaces est la
méthode des éléments finis de frontière. Elle est basée sur la théorie des équations intégrales,
théorie qui a pour but de reformuler l’EDP, initialement formulée dans tout l’espace, en une
équation intégrale posée sur le bord de l’obstacle uniquement. Nous référons le lecteur à [102]
pour un aperçu sur les méthodes d’équations intégrales. Aussi des exemples d’implémentation
de la méthode des éléments finis de frontière pourront être trouvées dans [40] pour la résolution
de divers problèmes en électromagnétisme. Lorsque les paramètres physiques de l’obstacle sont
inconnus, le problème de retrouver ces derniers à partir d’au moins une paire formée d’une
solution de l’EDP et du terme source correspondant, est lui qualifié de problème inverse. La
procédure à suivre pour collecter les données permettant de résoudre le problème inverse est
simple: le domaine sondé est soumis à une onde incidente, puis le champ diffracté résultant
est mesuré par des récepteurs. Cette opération peut éventuellement être répétée pour plusieurs
ondes incidentes différentes afin d’enrichir les données. Lorsque la distance entre les récepteurs
et la cible est de l’ordre de la longueur d’onde des ondes incidentes, les mesures sont qualifiées
de données de champ proche. En revanche, lorsque cette distance est suffisamment grande, on
utilise plutôt la donnée de champ lointain, une quantité qui apparâıt dans le premier ordre du
développement asymptotique du champ diffracté par rapport à la distance à l’emplacement de
sa source (l’obstacle). Le champ lointain dépend de la direction de l’observation. Si l’on con-
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sidère de surcrôıt l’ensemble des champs lointains générés par les ondes planes, on obtient un
jeu de données paramétré par deux variables: la direction d’observation ainsi que la direction
de propagation de l’onde plane incidente. Plusieurs méthodes d’inversions utilisent ce type de
données, dont la Linear Sampling Method qui sera décrite ci-après. Il existe également d’autres
possibilités pour placer les récepteurs, par exemple ils peuvent être disposés sur un plan ou sur la
surface du domaine sondé (pour sonder des guides d’ondes par exemple). La première question
à se poser avant d’essayer de résoudre le problème inverse est de savoir si les données collectées
permettent de caractériser les paramètres que l’on cherche à déterminer. Des réponses ont été
apportées en ce sens pour les problèmes de détermination de la forme de l’obstacle, de son indice
de réfraction, mais aussi pour de nombreux autres problèmes [115, 75, 84, 108, 58, 97]. Dans la
suite, nous passons en revue quelques méthodes d’inversion qui utilisent les données de champs
lointains.

Sans doute en raison de la difficulté du problème, il a pendant longtemps été d’usage de
traiter séparément deux types de problèmes inverses. Le premier regroupe les problèmes in-
verses liés à un obstacle impénétrable, le deuxième ceux qui sont liés à une inhomogénéité
pénétrable. Cette distinction est due au fait que les premiers algorithmes d’inversion reposaient
fortement sur le modèle mathématique décrivant le problème de diffraction. Dans les deux cas,
une linéarisation du problème a été proposé en première approche, la ramenant à un problème
d’équation intégrale de première espèce. Cette approche est connue sous le nom d’approximation
de Kirschoff et d’optique physique pour le problème avec obstacle impénétrable, et sous le nom
d’approximation de Born et Rytov pour le problème avec inhomogénéité pénétrable. Ces ap-
proximations sont intéressantes en raison de leur simplicité mathématique, et ont prouvé leur
efficacité pour de nombreuses applications telles que la tomographie [14, 39, 52, 91] et le radar
à synthèse d’ouverture [36, 16]. Cependant, les modèles linéarisés présentent un point faible im-
portant: la non-linéarité du problème de diffraction étant ignorée, leur validité n’est pas garantie
pour des milieux complexes. Parmi les premiers travaux préservant la non-linéarité du problème
inverse, on peut citer [74, 120], ils ont été complétés par de nombreux autres travaux qui ont de
plus abordé le caractère mal posé du problème inverse [64, 78, 67, 65, 98, 57]. Les techniques pro-
posées dans ces premiers travaux appartiennent toutes à une classe des méthodes dites itératives.
Elles nécessitent de résoudre plusieurs fois le problème direct, en mettant en œuvre des tech-
niques d’optimisations telles que les méthodes des moindres carrés [116], la méthode de Newton
[68, 69, 70], les méthodes quasi Newton [51], les méthodes level set [21]. Plus précisément, à
partir d’une estimation initiale de la cible, des mises à jour de cette dernière sont effectuées en
résolvant le problème direct à plusieurs reprises, jusqu’à ce que son comportement soit suffisam-
ment fidèle aux mesures. Bien que ces techniques donnent de bons résultats, il est difficile de les
utiliser pour des applications industrielles. En effet, elles sont très coûteuses en temps de calcul
et ne peuvent donc pas être utilisées dans des applications d’imagerie en temps réel, par exemple
pour contrôler l’évolution d’un matériau, ou bien pour l’utilisation en milieu médical nécessitant
la présence du patient, etc. Un autre inconvénient majeur de ces méthodes est que leurs mises
en œuvre nécessitent d’importantes informations a priori sur l’objet, par exemple sa nature ou
bien le nombre de composantes connexes, afin de choisir un bon paramétrage et une bonne
initialisation. Une nouvelle classe de techniques d’inversions, dites d’échantillonnages offrent
une alternative aux méthodes itératives. Elles permettent de réduire la quantité d’informations
requises au préalable ainsi que les coûts en temps de calcul, mais au prix certes d’extraire moins
d’informations sur le matériau sondé. En général, ces méthodes ne nécessitent pas de résoudre
le problème direct. Elles définissent plutôt une fonction indicatrice qui fournit des informations
sur l’emplacement, la forme et les propriétés de l’objet sondé. Pour mentionner quelques unes
de ces méthodes, nous pouvons citer la méthode de sondage [73], la méthode de source unique
[12] et la Linear Sampling Method (LSM) [46]. Un aperçu de ces méthodes peut être trouvé
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dans [109].

Nous nous intéressons à des techniques plus récentes qui ont permis d’améliorer la première
version de la LSM tout en élargissant son champ d’application. La LSM fait partie des méthodes
d’échantillonnages ponctuelles; ces dernières fournissent un procédé permettant de déterminer
si un point d’échantillonnage z ∈ R3 est à l’intérieur de l’obstacle ou non. La formulation de la
LSM repose sur la connaissance de l’opérateur de champ lointain F , un opérateur intégral dont
le noyau est constitué du champ lointain. Selon les résultats d’unicité mentionnés ci-dessus,
F contient toutes les informations sur l’objet sondé. La LSM permet d’extraire une partie
de ces informations du spectre de F . En quelques mots, elle s’appuie sur les propriétés de
l’équation de champ lointain, une équation linéaire mal posée impliquant F et dont le membre
de droite dépend du point d’échantillonnage z. L’étude de cette équation permet de définir
une fonction de la variable z qui est une indicatrice du support de l’obstacle. Cependant,
l’implémentation numérique de cette méthode, qui repose sur une régularisation de Tikhonov de
l’équation de champ lointain, fournit une certaine fonction qui n’est pas exactement la fonction
indicatrice prédite par la théorie. Malgré ce point faible, diverses simulations numériques attes-
tent néanmoins que la LSM reste fiable en première approche pour localiser un obstacle et/ou
déterminer le nombre de ses composantes connexes. En outre, l’algorithme décrit ci-dessus peut
être utilisé indépendamment de la nature du domaine sondé, lui conférant un avantage significatif
sur les méthodes d’optimisations. Le point faible théorique de la LSM est finalement levée grâce
à la célèbre Factorization Method (FM) [79, 80]. Cette méthode consiste à remplacer l’équation
de champ lointain par une autre, ce qui fournit une nouvelle fonction indicatrice de l’obstacle,
qui elle est accessible à partir des données. La FM a d’abord prouvé son efficacité pour les
obstacles impénétrables [79], puis pour les milieux inhomogènes [80, 81]. Depuis lors, la FM a
été étendue à divers problèmes académiques [83]. Plus récemment, de nombreux travaux ont
contribué à justifier la FM pour des milieux plus complexes, accréditant ainsi sa mise en œuvre
dans des applications réelles telles que la géophysique ou le contrôle non destructif [72, 71]. Nous
mentionnons également les articles [86, 15, 122] où des matériaux constitués à la fois d’obstacles
impénétrables et d’inhomogénéités sont considérés. Ces travaux soulèvent de nouvelles ques-
tions concernant la possibilité de distinguer l’obstacle impénétrable de l’inhomogénéité. Plus
récemment, la Generalized Linear Sampling Method (GLSM) a été proposée en autre alterna-
tive à la LSM [10]. Contrairement à la FM, l’équation de champs lointain est conservée mais sa
régularisation classique de Tikhonov est remplacée par de nouveaux schémas de régularisations
qui fournissent une caractérisation exacte du support de l’obstacle. Un point important à noter
est que la GLSM a aussi abouti à des méthodes permettant d’identifier l’apparition de défauts
dans un matériau [9, 8].

La LSM a initialement été étudiée pour les obstacles de Dirichlet. Il a alors été constaté
que son bon fonctionnement requiert une certaine condition sur le nombre d’onde k des ondes
incidentes utilisées. En effet, la justification de la méthode nécessite que l’ensemble des champs
lointains générés par les ondes planes soient denses dans l’espace des fonctions de carré intégrable
sur la sphère unité de R3. Ce résultat n’est valable que lorsque k2 n’est pas une valeur propre de
Dirichlet (VPD) pour l’opérateur de Laplace à l’intérieur de l’obstacle [46]. La figure 2 illustre
le fait que cette restriction sur le nombre d’onde est effective. Pour un obstacle de Dirichlet
constitué de deux disques disjoints de rayon r1 = 1 et r2 = 2, nous avons généré deux jeux
de données de champs lointains respectivement obtenus avec des nombres d’onde légèrement
différents. L’image de gauche montre les résultats de la LSM pour k1 = 4 et celle de droite pour
k2 = 4, 33. Suivant le principe que des ondes de longueur d’onde λ = 2π/k devraient permettre
de détecter des obstacles ayant des dimensions du même ordre de grandeur que λ, les résultats
présentés sont doublement frappants. Tout d’abord, sur l’image de droite, le petit disque est
mieux reconstitué que le grand disque. Deuxièmement, sur l’image de gauche, la reconstruction
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Figure 2: Performance de la LSM lors de la détection d’un obstacle de Dirichlet constitué de deux
disques disjoints de rayons r1 = 1 et r2 = 2. La reconstruction est menée avec deux jeux de données
de champs lointains générés à des nombres d’ondes différents k1 = 4 (gauche) et k2 = 4.33 (droite). k2

2

correspond à la première valeur propre de Dirichlet du grand disque (au centième près). Sur l’image de
droite, l’inclusion en haut à droite est anormalement mal reconstruite.

de l’obstacle est plus nette alors que la longueur d’onde utilisée est plus grande. Cet effet non
désiré est dû au fait que k2

2 correspond à une VPD pour l’opérateur de Laplace sur le disque de
rayon r2 = 2. Notons qu’une telle manifestation des VPD est rare en pratique, car ces dernières
sont en quantité discrète. L’adaptation de la LSM aux obstacles pénétrables [47, 77] a conduit de
manière similaire à une restriction sur le nombre d’onde. Ce dernier doit être choisi de sorte que
le problème dit de transmission intérieur (PTI), un problème de Cauchy couplant deux équations
aux dérivées partielles sur un domaine correspondant au support de l’obstacle, soit bien posé.
Ainsi, l’équivalent des VPD pour un milieu pénétrable correspond au spectre du PTI dont les
éléments sont les valeurs propres de transmissions (VPTs). Par conséquent, démontrer que les
VPTs sont au plus en quantité discrète, tout comme les valeurs propres de Dirichlet, a été un
enjeu majeur pour pouvoir assurer la validité de la LSM à presque toutes les fréquences. Cela
a d’abord été prouvé dans le cas de milieux stratifiés à symétrie sphériques [47], situation pour
laquelle il est possible de mener des calculs impliquant des équations algébriques où apparaissent
naturellement les fonctions de Bessel. Peu après, ce résultat a été prouvé dans un cas plus général
[43, 113]. En revanche, la question de l’existence des VPTs a été considérée beaucoup plus tard.
Pendant longtemps, le seul résultat connu fut qu’il n’y a pas de VPTs réelles lorsque l’indice de
réfraction a une partie imaginaire non nulle. Cette absence de résultats s’explique d’une part
par la difficulté d’étudier le PTI, qui est ni elliptique ni auto-adjoint, avec les outils de l’époque.
D’autre part, la nature discrète des VPTs étant suffisante pour justifier l’utilisation de la LSM en
pratique, la question de l’existence était dépourvue d’intérêt. Récemment, des travaux ont remis
la question de l’existence des VPTs au goût du jour: il est possible de calculer les VPTs à partir
de données de champs lointains [28] et de les utiliser pour obtenir des informations qualitatives
sur les propriétés physiques du matériau sondé [31, 25]. Päivärinta et Sylvester ont démontré
en 2008 l’existence d’au moins une VPT réelle quelque soit la géométrie de l’obstacle [104], la
preuve requiert néanmoins que l’indice de réfraction soit suffisamment grand. Ce résultat est
complété par les travaux de Cakoni, Gintides et Haddar [33], où il est démontré l’existence d’une
infinité de VPTs réels tout en supprimant la condition sur l’indice de réfraction.

Suite à ces résultats, une attention croissante a été accordée aux VPTs et à leur utilisation
pour résoudre le problème inverse. Les hypothèses sur l’indice de réfraction ont été constamment
affaiblies. Pendant longtemps, il a été nécessaire d’exclure les matériaux ayant un contraste qui
change de signe, alors que de telles situations se présentent en pratique, nous citons la tomo-
graphie thermoacoustique à titre d’exemple [61]. L’étude du PTI avec cavités a été la première
à faire face à cette difficulté [26]. Par la suite, l’utilisation de la notion de T-Coercivité, outil
initialement développée pour les problèmes impliquant des métamatériaux, a considérablement
affaibli les conditions sur le contraste [38]. En effet, l’utilisation de la T-Coercivité a permis de
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prouver le caractère discret des VPTs sous la seule condition que le contraste ne change pas de
signe sur le bord de l’obstacle [37]. Des travaux reprennent cette hypothèse pour traiter le cas
de milieux dont l’indice de réfraction est autorisé à prendre des valeurs complexes [112]. Dans
ce dernier travail, une caractérisation complète de l’ensemble du spectre du PTI est effectuée
(y compris les VPTs complexes). Pour conclure sur les propriétés des VPTs, nous mention-
nons également les estimations asymptotiques de type Weyl pour la fonction de comptage des
VPTs [111, 56, 89, 90, 105] et les résultats sur la localisation des VPTs dans le plan complexe
[60, 89, 106]. Enfin, les différents cadres développés pour étudier le PTI ont été étendus aux
équations de Maxwell [53, 35, 49]. Parallèlement à tous ces travaux, plusieurs contributions
ont étayé l’utilisation des VPTs pour résoudre le problème inverse. Tout d’abord, les méthodes
de calculs des VPTs ont été grandement améliorées. Auparavant, la justification du calcul des
VPTs s’appuyait sur la LSM, mais ceci n’était pas satisfaisant en raison des points faibles de la
LSM mentionnés ci-dessus. De nouvelles méthodes telles que la GLSM et la dualité intérieur-
extérieur règlent ce problème [10, 85, 93, 94, 95]. Par ailleurs, de nombreux travaux ont proposé
des techniques recourant aux VPTs pour établir des estimations sur les propriétés des matériaux
sondés [22, 31, 63, 66, 32]. Nous mentionnons également une application intéressante des VPTs
permettant de concevoir des matériaux peu détectables par des mesures de champ lointain [54].
De récents travaux se sont donnés pour nouvelle tâche de simplifier le lien entre les VPTs et les
paramètres physiques du matériau sondé. Cette initiative s’explique du fait que la restitution
d’informations précises à partir des VPTs n’est pas aisée, ce qui limite considérablement les infor-
mations pouvant être obtenues. Une des raisons pour laquelle il est compliqué d’utiliser les VPTs
est qu’elles n’apparaissent pas comme étant le spectre d’un quelconque opérateur auto-adjoint.
Pour surmonter cette difficulté, certains travaux suggèrent de considérer plutôt un spectre mod-
ifié, dont les éléments dénommées valeurs propres de transmission relatives (VPTRs) peuvent
aussi être calculé à partir des données de champ lointain [6, 30, 5, 41]. L’idée consiste à intro-
duire un obstacle artificiel qui peut être choisi par l’observateur. Les VPTRs correspondent alors
au spectre d’un nouveau problème de transmission, le problème de transmission relatif (PTR),
qui indique qu’aux VPTRs, il existe un champ incident tel que le champ lointain résultant du
milieu effectif et celui résultant du milieu artificiel sont arbitrairement proches. L’utilisation des
VPTRs présente un autre avantage, elles dépendent de l’obstacle artificiel qui peut être ajusté
à volonté, en fonction du problème considéré. Ainsi, le choix du paramétrage approprié des
composantes de l’obstacle artificiel, comme sa position, sa géométrie, sa nature (pénétrable ou
non) peut simplifier considérablement le lien entre les VPTRs et les paramètres d’intérêts.

Plan de la thèse

Nous nous intéressons à l’utilisation des ultrasons pour détecter et localiser la présence de défauts
au sein d’un matériau. Cette question a son importance dans divers domaines. Pour citer
quelques exemples, mentionnons le contrôle du niveau de dégradation de certaines structures du
génie civil telles que les ponts, les bâtiments, les rails; la détection d’anomalies dans les tissus
biologiques afin de diagnostiquer des maladies; l’exploration des sols lors de la recherche de
cavités naturelles ou anthropogéniques, de réseaux, d’objets enterrés ou d’anomalies souterraines.
De nombreux problèmes de diffusions peuvent être modélisés par l’équation d’élasticité linéaire,
elle est généralement valable lorsque les déformations et contraintes sont faibles. En considérant
uniquement les ondes longitudinales, l’équation d’élasticité peut être simplifiée en l’équation de
Helmholtz. Nous nous appuyons sur cette dernière équation et utilisons des mesures de champs
lointains pour développer des méthodes d’inversions qui répondent à nos objectifs. Les types de
défauts qui nous intéressent sont des obstacles impénétrables. Ils peuvent être soit d’intérieurs
non vide, soit d’intérieurs vide (on parle alors de fissures). Ces deux différents cas requièrent
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chacun un traitement particulier et seront considérés séparément. Une plus grande attention
est accordée aux défauts correspondant à des obstacles avec des conditions aux limites de types
Neumann, car il s’agit d’un modèle assez réaliste pour les fissures. Pour que la présence d’un
obstacle soit perceptible sur les données mesurées, la fréquence de travail doit être du même
ordre de grandeur que la taille du défaut recherché. Une difficulté classique lors de l’imagerie
de milieux hétérogènes est qu’en cas de contraste élevé ou de présence d’inclusions avant la
dégradation, il est difficile de distinguer la contribution du défaut sur les mesures. La Differential
Linear Sampling Method (DLSM) apporte une solution à cette difficulté [9]. Cette méthode a
été initialement mise en place pour identifier une modification de l’indice de réfraction dans une
inhomogénéité. Elle repose sur des mesures différentielles, c’est-à-dire des mesures prises à la fois
avant et après l’apparition du défaut. Nous adaptons la DLSM à notre problème de détection
dans les chapitres 2 et 4. Le chapitre 2 traite le cas des fissures de type Neumann tandis que le
chapitre 4 traite le cas de défauts de type Neumann d’intérieurs non vide. La DLSM s’appuie sur
les résultats de la Generalized Linear Sampling Method (GLSM) dont la mise en œuvre nécessite
que le problème de transmission intérieur (PTI) soit bien posé. Par conséquent, l’adaptation de
la DLSM à notre problème nous a aussi conduit à étudier deux PTI. Le premier PTI correspond
à des inhomogénéités contenant des fissures, il est étudié dans le chapitre 3. Le second PTI
correspond à des inhomogénéités contenant des obstacles d’intérieurs non vide, il est étudié
dans le chapitre 5. Dans un dernier chapitre (chapitre 6), nous développons deux techniques
permettant de sonder des milieux très endommagés comportants des réseaux de fissures. Nous
définissons une densité locale de fissures et fournissons un moyen d’estimer cette quantité à partir
des données. Deux différentes approches sont proposées. La première approche utilise le spectre
d’un problème de transmission particulier dit relatif et nécessite des données de champ lointain
mesurées à plusieurs fréquences différentes. Cependant, cette première technique est coûteuse
en quantité de données requises ainsi qu’en temps de calculs. C’est pourquoi nous proposons
une méthode alternative qui elle ne requiert pas de mesures multi-fréquentielles. Cette dernière
méthode combine les idées de la DLSM et l’utilisation de milieux artificiels.

Chapitre 1 : Les méthodes d’échantillonages

Dans ce chapitre, nous proposons un bref aperçu de la Linear Sampling Method (LSM) et deux
versions de ses généralisations, à savoir la Factorization Method (FM) et la Generalized Lin-
ear Sampling Method (GLSM). Ces trois méthodes d’échantillonnages permettent de retrouver
le support d’un obstacle à partir de l’opérateur de champ lointain F dont nous rappelons la
définition. Nous insistons sur le fait qu’elles extraient en particulier des informations du spectre
de F . Nous introduisons également le problème de transmission intérieur (PTI), un problème
de Cauchy qui est étroitement lié à ces méthodes. Plus précisément, le spectre de ce problème,
dont les éléments sont appelés valeurs propres de transmissions (VPTs), indique les fréquences
auxquels les méthodes mentionnées ne sont pas valides. Nous présentons une méthode fournie
par le GLSM qui permet de calculer les VPTs. Ces concepts sont illustrés sur un cas simple en
dimension 2, l’obstacle considéré est un disque pénétrable d’indice constant. Ce cadre offre la
possibilité de mener des calculs impliquant des fonctions de Bessel. Par conséquent, une descrip-
tion exacte des propriétés spectrales de F peut être établie, ce qui permet d’écrire explicitement
les fonctions indicatrices du disque, fournies par chacune des trois méthodes d’échantillonnages.
Il est donc possible de comparer la précision de ces méthodes (au moins numériquement). La
GLSM permet non seulement de déterminer les VPTs, mais aussi d’approximer certaines solu-
tions du PTI. Relier l’erreur commise dans le calcul des VPTs au bruit semble être une tâche
ardue, bien qu’importante en raison de l’intérêt croissant pour l’utilisation des VPTs dans la
résolution du problème inverse. De même, il semble difficile de déterminer la vitesse de conver-
gence de la solution régularisée de la GLSM vers la solution du problème de transmission dans
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le cas général. Cette information est importante car permettrait une meilleure compréhension
du comportement de la DLSM (choix du paramètre de régularisation par rapport au bruit et
interprétation des images produites). Pour le cas particulier étudié dans ce chapitre, nous four-
nissons une borne inférieure de cette vitesse de convergence.

Chapitre 2 : Détection de fissures de type Neumann dans une inhomogénéité
isotrope

Nous considérons le problème de détection de fissures de type Neumann dans un milieu de
référence non homogène à partir de données multistatiques de champs lointains. Nous fournissons
la factorisation adéquate de l’opérateur de champ lointain, nécessaire à la mise en œuvre de
la Generalized Linear Sampling Method (GLSM). La justification de l’analyse est également
basée sur l’étude d’un problème de transmission intérieur particulier. Cette technique nous
permet dans un premier temps de retrouver le support de l’inhomogénéité, cependant elle ne
permet pas de distinguer les fissures qu’elle contient. Dans un deuxième temps, nous justifions
l’utilisation de la Differential Linear Sampling Method (DLSM) pour identifier la composante
de l’inhomogénéité qui a été sujette à l’apparition de fissures, à partir de mesures effectuées
avant et après l’endommagement. La justification théorique de cette méthode repose sur la
comparaison des solutions de deux problèmes de transmission intérieurs différents, le premier
problème étant associé au matériau sain et le deuxième au matériau endommagé. Enfin, nous
illustrons la GLSM et la DLSM en fournissant des résultats numériques effectués en dimension
2. En particulier, nous montrons que notre méthode est fiable pour différents scénarios simulant
l’apparition de fissures entre deux collectes de mesures.

Chapitre 3 : Le problème de transmission intérieur pour des inhomogénéités con-
tenant des fissures de type Neumann.

Dans ce chapitre, nous étudions le problème de transmission intérieur (PTI) pour des d’inhomogé-
néités isotropes contenant des fissures de type Neumann. Ce problème a été introduit dans le
chapitre 2 où nous avons étendu le domaine de validité de la Generalised Linear Sampling Method
à ce type de milieux. Nous adaptons la méthode utilisée dans le cas sans fissures [33] pour prou-
ver que l’ensemble des valeurs propres de transmissions (VPTs) réelles est infini, discret et sans
points d’accumulations. Nous établissons également des inégalités de type Faber-Krahn pour les
VPTs. Cette étude nécessite que l’indice de réfraction n ∈ L∞(D) soit à valeurs réelles et mi-
norée par 1. Dans le cas contraire, le cadre que nous développons ne permet pas de prouver que
le PTI vérifie la propriété de Fredholm, ce qui empêche d’établir le caractère discret des VPTs
ainsi que leur existence. Nous soulignons qu’une difficulté similaire apparâıt dans l’analyse du
PTI pour des inhomogénéités contenant des obstacles de Dirichlet [32]. Plus précisément, le cas
n < 1 a pu être traité mais pas le cas n > 1. Enfin nous montrons que tout comme pour le PTI
classique, il n’y a pas de VPTs réelles lorsque le milieu est absorbant.

Chapitre 4 : Détection d’inclusions de type Neumann dans des milieux hétérogènes

Nous considérons le problème d’identification de défauts de type Neumann d’intérieurs non vide
au sein d’une hétérogénéité inconnue. Nous utilisons pour cela des données de champs lointains
mesurées à une certaine fréquence que nous fixons. Nous adaptons les résultats de la Differential
Linear Sampling Method (DLSM) [9] dont la mise en oeuvre requiert deux séries de mesures,
l’une effectuée avant l’apparition du défaut et l’autre après. La justification théorique de la
DLSM repose sur la comparaison des solutions de deux problèmes de transmission intérieurs
différents. Le premier problème est associé au matériau sain alors que le second est associé au
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matériau endommagé. Exploiter ces résultats en pratique requiert le calcul de ces deux solutions
à partir des données. Ceci peut être effectué grâce à la Generalized Linear Sampling Method
(GLSM) [10]. Cette dernière méthode consiste à approximer les solutions de l’équation de champ
lointain en utilisant une pénalisation particulière. La justification de la GLSM nécessite d’une
part une factorisation de l’opérateur de champ lointain, similaire à celle utilisée pour la Linear
Sampling Method (LSM). D’autre part, la pénalisation utilisée doit être équivalente à l’opérateur
de Herglotz et doit de plus satisfaire une certaine propriété de convexité. L’opérateur F], utilisé
dans la seconde version de la Factorization Method (FM) est un bon candidat pour une telle
pénalisation. En outre, il convient de noter que les solutions de l’équation de champ lointain
sont calculées via l’optimisation d’une fonction coût et que cette dernière étape est grandement
simplifiée du fait que l’opérateur F] est défini positif. Enfin nous mentionnons que notre analyse
apporte également les éléments théoriques qui permettent d’étendre la validité de la FM ainsi
que de la GLSM aux milieux hétérogènes contenant des inclusions de types Neumann, offrant
ainsi une procédure de reconstruction du support de ce type d’obstacles.

Chapitre 5 : Le problème de transmission intérieur pour des inhomogénéités con-
tenant des inclusions de type Neumann

Nous étudions dans ce chapitre le problème de transmission intérieur (PTI) pour des inho-
mogénéités isotropes contenant des inclusions de type Neumann. Ce chapitre diffère du chapitre
3 du fait que les inclusions considérées sont ici d’intérieurs non vide. Nous étudions les questions
classiques liées à l’étude des problèmes de transmission intérieurs, à savoir la propriété de Fred-
holm, le caractère discret de l’ensemble des valeurs propres de transmissions (VPTs) et l’existence
de VPTs positives. La première approche que nous considérons repose sur une formulation du
quatrième ordre du PTI. Cette approche a été introduite dans [113] pour l’étude des inho-
mogénéités isotropes et utilisée avec succès dans de nombreux autres travaux : [33, 34, 104, 32].
Cependant, nous avons rencontré plusieurs difficultés avec cette approche. Tout d’abord, trouver
la bonne formulation faible a été une tâche délicate et nous avons été contraints de définir un
espace variationnel qui dépend du paramètre k. Nous avons traité cette situation en adaptant
les travaux portant sur l’étude du PTI avec des cavités [26], où une telle formulation est utilisée.
Nous précisons que cette difficulté ne s’est pas manifestée dans l’étude du PTI lorsque les inclu-
sions sont de type Dirichlet [32] plutôt que de type Neumann. Le cadre que nous développons
permet de prouver le caractère discret des VPTs sous certaines conditions, portant sur l’indice
de réfraction mais aussi sur la taille de l’inclusion. La question de l’existence des VPTs reste
quant à elle ouverte, nous expliquons pourquoi nos différentes tentatives pour répondre à cette
question ont échouées. Dans une dernière partie, nous proposons une autre approche permet-
tant d’établir le caractère discret de l’ensemble des VPTs tout en relaxant l’hypothèse faite sur
l’indice de réfraction et en supprimant de surcrôıt la condition portant sur la taille de l’inclusion.
Cette dernière approche repose sur les propriétés de l’opérateur de Dirichlet-to-Neumann.

Chapitre 6 : Estimation des densités locales de fissures dans des milieux fortement
endommagés

Nous considérons le problème d’identification de fissures incluses dans un milieu homogène à
partir de données multi-fréquentielles de champs lointains générées par des ondes acoustiques
planes. Tout d’abord, nous faisons remarquer que cette configuration ne permet pas de définir un
problème de transmission intérieur au sens usuel car l’ensemble des fissures Γ est d’intérieur vide.
Cependant, en travaillant avec un obstacle artificiel de type Dirichlet Ω, nous montrons qu’il est
possible de définir un problème de transmission relatif (PTR) dont le spectre est constitué des
valeurs propres de transmissions relatives (VPTRs). Ces dernières ont une caractérisation qui est
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proche de celle des valeurs propres de Dirichlet (VPD) pour l’opérateur de Laplace dans Ω. Les
fonctions propres u correspondant aux VPTRs doivent satisfaire à la condition supplémentaire
σ(u) = 0 sur Γ ∩ Ω, où σ indique les conditions aux limites sur Γ. Chaque VPTR peut donc
être considérée comme étant une perturbation d’une VPD et la comparaison de ces deux valeurs
propres pourrait apporter une information sur Γ ∩ Ω. En outre, nous montrons que les VPTRs
peuvent être déterminées à partir des données. Nous adaptons à cet fin la Generalized Linear
Sampling Method (GLSM) qui a déjà fait ces preuves pour le calcul des valeurs propres de
transmissions classiques [10]. Les VPD peuvent elles aussi être déterminées car la géométrie de
Ω nous est connue. Par conséquent, il est possible de mesurer les différences δ(Ω,Γ) entre les
VPTRs et les VPD à partir des données. De plus, nous montrons que la fonction Γ 7→ δ(Ω,Γ)
est monotone par rapport à Γ ∩ Ω pour l’ordre de l’inclusion, ceci étant valide quelque soit les
conditions aux limites sur Γ (Dirichlet, Neumann, impédance). Ce résultat nous a conduit à
utiliser δ(Ω,Γ) comme estimateur de |Γ ∩ Ω|, quantité que nous avons désignée par densité de
fissures localisées en Ω. Enfin, la densité de fissures est obtenue en tout points en répétant ce
processus avec une collection d’obstacles artificiels (Ω + t)t∈A⊂R3 , constituée de translations de
Ω, qui balayent la zone sondée. La résolution de cette méthode est fixée par la taille de Ω.

La méthode décrite ci-dessus présente cependant un point faible. En effet, déterminer les
VPTRs associées à un obstacle artificiel est très couteux en temps de calculs. La production
d’images en haute résolution devient alors difficile car nécessite d’utiliser d’avantage d’obstacles
artificiels (qui sont alors de taille plus petite). Pour contourner cet inconvénient, nous proposons
une autre méthode qui ne requiert pas de données multi-fréquentielles. Cette nouvelle approche
combine la notion de milieu artificiel aux résultats de la Differential Linear Sampling Method
[9]. Au lieu de comparer les spectres, nous comparons plutôt les solutions du PTR à ceux de
l’équation de Helmholtz dans Ω. Ceci permet de détecter la présence éventuelle de fissures à
l’intérieur de Ω, car en effet les solutions cöıncident lorsque Γ ∩ Ω = ∅ et diffèrent (en général)
lorsque Γ ∩ Ω 6= ∅. Ce critère peut être utilisé en pratique grâce à la GLSM qui fournit une
méthode pour calculer les solutions du PTR à partir des données. Les solutions de l’équation
de Helmholtz sur Ω peuvent quant à elles être calculées avec une méthode d’approximation
numérique car la géométrie de Ω nous est connue. On pourra par exemple utiliser la méthode
des éléments finis. Enfin, en balayant la zone sondée par un obstacle artificiel Ω, il est possible de
déduire la position des fissures. Cette méthode est valide pour des fissures ayant des conditions
aux limites de type Dirichlet, Neumann, ou bien d’impédance. La précision est fixée comme pour
la première méthode par la taille de Ω. Sur les simulations numériques présentées, il semble que
cet indicateur révèle aussi la densité de fissures du milieu sondé, bien que ce résultat ne soit pas
établi.
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1.1 Introduction

Inverse scattering theory aims to determine the physical properties of the scattering medium
from measurements of the scattered waves. This field is rich of numerous inversion techniques
and has many applications, e.g. tomography, medical imaging, non destructive testing. We refer
the reader to [45] for a state of the art on the mathematical theory of inverse scattering theory.

The sampling methods, which is the main topic of this chapter, is a wide class of inversion
methods which finds a compromise between the physical parameters that can be retrieved and the
required a priori knowledge on the obstacle. Indeed they only allow to reconstruct the shape of
the obstacle without indicating the nature of the latter, but the flexibility of the method enables
it to be implemented for a large range of problems [83]. The sampling methods rely on the
knowledge of the far field pattern, a quantity that is obtained by measuring the amplitude of the
resulting scattered wave far from the obstacle, repeatedly for every incident plane waves. The far
field operator F which is an integral operator with the far field pattern being its kernel, contains
all the information on the obstacle according to the uniqueness results [44]. The knowledge
of the far field operator is indeed the starting point of the sampling method: they somehow
more particularly deal with the spectrum of the latter. This last point will be highlighted in
the present chapter. A famous method among the sampling methods is the Linear Sampling
Method. It relies on the solvability of the far field equation, a linear ill-posed equation involving
F . The far field equation depends on a parameter z ∈ R3, and the Tikhonov regularization of

19
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this equation is used with a parameter α. In practice the far field operator is corrupted with
noise and α is fixed by the a posteriori choice prescribed by the Morozov discrepancy principle
[119]. The theory indicates that the support D should be identified by abnormal blow up of the
norm of a certain linear function of the regularized solution when z is outside of D. However
this function is not accessible and replaced by the regularized solution itself, which constitutes
the main weak point of the LSM theory. The Factorization Method (FM) has been developed
in order to bypass this weak point. The data fidelity term is modified in order to obtain a
theoretical guarantee with a similar Tikhonov regularization. The first version of the FM was
quite restrictive. The operator F was required to be normal, thus excluding the possibility
to solve the inverse problem for dissipative medium. A second version of the FM has been
proposed in order to weaken this restriction. More recently, an alternative solution to overcome
the weak point of the LSM has been provided by the Generalized Linear Sampling Method [10].
The classical Tikhonov regularization of the far field equation is replaced by new regularization
schemes which provides an exact characterization of the support of the obstacle.

In this chapter, we provide a brief overview of the Linear Sampling Method and two versions
of its generalization, namely the Factorization Method and the Generalized Linear Sampling
Method. We introduce the far field operator and while presenting the mentioned sampling
methods, we insist on the fact that they mainly deal with the spectrum of F to recover the
shape of the inhomogeneity. The Interior Transmission Problem which is closely related to these
methods is also introduced and we present the method provided by the GLSM to compute the
transmission eigenvalues. We illustrate these concepts on the simple case where the inhomo-
geneity embedded in R2 has a constant refractive index and whose support is a disk D. This
setting allows one to carry explicit computations involving Bessel functions. Consequently, an
exact description of the spectral properties of F can be derived, allowing one to explicitly write
the indicator functions of D provided by the different considered sampling methods. Therefore
it is possible to compare the accuracy of these methods (at least numerically). We also recall
the two advances provided by the GLSM towards the possibility of retrieving information from
ITP. Firstly, GLSM provides an exact determination of TEs from far field data. Secondly, the
regularized solution of the far field equation which is defined in the framework of the GLSM,
converges to the solution of ITP. Relating the error made in the computation of TEs with respect
to the noise level seems challenging, although important because of the increasing interest in
using TEs to solve the inverse problem. Determining the rate of convergence of the regularized
solution of the GLSM to the solution of the transmission problem seems also to be a difficult
task. This information is important as it would allow a better understanding of the behavior of
the DLSM (choice of the the regularization parameter with respect to noise, interpretation of
the produced images). For the particular example studied in this chapter, we provide a lower
bound of this rate of convergence.

1.2 The basics of acoustic scattering theory

We consider an isotropic inhomogeneity embedded in Rd, d = 2 or 3. We assume that the
propagation of waves in time harmonic regime is governed by the Helmholtz equation

∆u+ k2nu = 0 in Rd

where k > 0 is the wave number and n ∈ L∞(Rd) is the refractive index of the medium. We
assume that n is a complex valued function such that the support of n − 1 is equal to a set D
corresponding to the shape of the inhomogeneity. The domain D is bounded, its boundary is
Lipschitz and Rd \ D is connected. For physical considerations, n is moreover assumed to be
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satisfying =m(n) ≥ 0 in Rd. Given an incident wave ui which solves the Helmholtz equation in
free space, that is ∆ui + k2ui = 0 in R2, the scattered field

us := u− ui

then satisfies

∆us + k2nus = −k2(n− 1)ui in Rd. (1.1)

Moreover we impose that us satisfies the Sommerfeld radiation condition

lim
r→+∞

r
d−1
2

(
∂us
∂r
− ikus

)
= 0. (1.2)

The scattered field us ∈ H2
loc(Rd) is uniquely determined by (1.1)-(1.2) [44]. Furthermore, it can

be shown that the Sommerfeld radiation condition implies following asymptotic expansion for
the scattered field,

us(x) =
eik|x|

|x|
d−1
2

(
u∞s (x̂) +O(1/|x|)

)
(1.3)

as |x| → +∞, uniformly in x̂ = x/|x| ∈ Sd−1, which denotes the unit sphere of Rd. The function
u∞s : Sd−1 → C, is called the far field pattern associated with ui. We are interested in far
field patterns associated with a particular class of incident waves called Herglotz wave functions
defined for g ∈ L2(Sd−1) by

vg :=

∫
Sd−1

g(θ)eikθ·x ds(θ). (1.4)

We denote by u∞s (θ, x̂) the far field pattern associated to ui(θ, ·) := eikθ·x for θ ∈ Sd−1 (incident
plane wave of direction θ), thanks to the linearity of the scattering problem (1.1)-(1.2), the far
field pattern associated to the Herglotz wave vg is given by

(Fg)(x̂) =

∫
Sd−1

g(θ)u∞s (θ, x̂) ds(θ). (1.5)

This defines the so called far field operator F : L2(Sd−1) → L2(Sd−1) which constitutes the
data of the inverse scattering problem where one is interested in recovering qualitative or even
quantitative information on the refractive index n. In the next section, we present three methods
allowing one to recover the shape of D from the knowledge of F , namely the Linear Sampling
Method (LSM), the Factorization Method (FM) and the Generalized Linear Sampling Method
(GLSM). These methods belong to the class of sampling methods which consist in constructing
an indicator function depending on a parameter z ∈ Rd that is only bounded for z in D, the
support of n− 1.

1.3 An overwiew of some sampling methods

1.3.1 The linear sampling method

We begin with the LSM which is the earliest sampling method and also the starting point of FM
and GLSM. It was first introduced by Colton and Kirsch in 1996 [42]. For z ∈ Rd we denote by
Φz the fundamental solution of (1.1)-(1.2) defined by
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Φz(x) =
i

4
H0(k|x− z|) if d = 2 and Φz(x) =

1

4π

eik|x−z|

|x− z|
if d = 3 (1.6)

where H0 is the Bessel function of first kind of order 0. The far field pattern of Φ∞z is given by

Φ∞z (x̂) = ηde
−ikx̂·z, (1.7)

where the constant ηd is equal to ei
π
4 /
√

8πk for d = 2, and to 1/(4π) for d = 3. The main
idea behind the LSM is that Φ∞z can be approached by a sequence of far fields associated to
Herglotz waves if and only if z ∈ D. In this case, the chosen sequence of Herglotz waves
converges to some limit ui ∈ L2(D) (which is not a Herglotz wave in general). Furthermore,
the far field associated with ui is Φ∞z . A more rigorous description of this result requires a
particular factorization of the far field operator which is explained hereafter. We define the
Herglotz operator H : L2(Sd−1)→ L2(D) by

Hg := vg |D, (1.8)

the closure of the range of H is given by [44]

R(H) = {v ∈ L2(D) |∆v + k2v = 0 in D}. (1.9)

Then we define the operator G : R(H)→ L2(Sd−1) by

Gv := u∞s (1.10)

where u∞s is the far field of the solution us of (1.1)-(1.2) with ui|D = v. Notice from (1.1) that
us only depends on ui|D. Then the following equality is straightforward

F = GH. (1.11)

With these notations, the mentioned main result can be reformulated as follows: z ∈ D if and
only if there exists v ∈ R(H) such that Gv = Φ∞z . At this point, it is important to mention
that this assertion is true under a particular assumption on the wavenumber k. Indeed, consider
such an incident field v for z ∈ D and let us be the associated scattered field. By definition of
G, we have that u∞s = Φ∞z . But according to the Rellich lemma [29, Lemma 1.6] (two outgoing
solutions of the homogeneous Helmholtz equation outside a ball that have the same far field
patterns are equal outside the ball) and the unique continuation principle, us = Φz in Rd \D.
Now u := us + v is easily seen to be satisfying ∆u+ k2nu = 0 in D. Moreover the H2 regularity
of us implies the two transmission conditions u− v = Φz and ∂ν(u− v) = ∂νΦz on ∂D. In short,
a solution v ∈ R(H) of Gv = Φ∞z must satisfies the interior transmission problem (ITP) below
with f = Φz |∂D and g = ∂νΦz |∂D.

The Interior Transmission Problem
For given f ∈ H3/2(∂D) and g ∈ H1/2(∂D), find (u, v) ∈ L2(D)×L2(D) such that u−v ∈ H2(D)
and

∆u+ k2nu = 0 in D
∆v + k2 v = 0 in D

u− v = f on ∂D
∂ν(u− v) = g on ∂D.

(ITP)
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For instance, in the case where (n−1)−1 ∈ L∞(Rd) and <e(n−1) is positive definite or negative
definite, it is known that problem (ITP) is well posed for all k ∈ R except a countable set without
any finite accumulation point [43]. We now have all the ingredients to outline the theoretical
result of LSM.

Theorem 1.3.1. Assume that (ITP) is well posed. Then Φ∞z ∈ R(G) if and only if z ∈ D.

Proof. The proof for z ∈ D is already outlined above. If z /∈ D then by the Rellich lemma and
the unique continuation principle, us = Φ∞z in Rd \ {D ∪ {z}} where us is as in the discussion
above. This gives a contradiction since us ∈ H2(B) while Φz /∈ H2(B) with B ⊂ Rd being a
neighborhood of z.

A direct consequence from the definition of G and (1.11) is:

Corollary 1.3.2. Assume that k is such that (ITP) is well posed then

• If z ∈ D then there exists gαz such that ‖Fgαz − Φ∞z ‖ < α and lim
α→0
‖Hgαz ‖L2(D) < +∞.

• If z /∈ D then for all gαz such that ‖Fgαz − Φ∞z ‖ < α, lim
α→0
‖Hgαz ‖L2(D) = +∞.

This result gives a first possibility to recover D by the use of the indicator z 7→ ‖Hgαz ‖L2(D)

for small values of α but this is not of practical interest. Indeed, a first weak point is that it
does not indicate how to construct the sequence (gαz )α>0. In practice, one uses the Tikhonov
regularization of the equation Fg = Φ∞z , i.e the solution of

(F ?F + αI)gαz = F ?Φ∞z .

Since F has dense range, this provides a sequence gαz such that ‖Fgαz − Φ∞z ‖ → 0 when α→ 0.
In the case =m(n) = 0, it has been shown that the solution of Tikhonov regularization satisfies
the first point of the theorem (see [3, 4]). A second weak point of this method is that the
quantity ‖Hgαz ‖L2(D) cannot be computed since D is unknown. For numerical implementations,
the quantity ‖gαz ‖L2(Sd−1) is computed instead and generally provides satisfactory results.

1.3.2 The factorization method

The Factorization Method introduced by Kirsch [80] avoids the drawbacks of the LSM as it gives
an exact characterization of D in terms of F . The main idea is to define a new operator that can
be computed from the far field operator and that has the same range of G. Then the operator
G is replaced by this new operator in the LSM theoretical result, Theorem 1.3.1. This leads to
a more explicit characterization of the belonging of z to D.

The (F?F)
1
4 method

The (F ?F )
1
4 is the first version of FM. It relies on a second factorization of the far field operator

F which is

F = H?TH. (1.12)

The operator T : R(H) ⊂ L2(D)→ L2(D) is defined by

Tv := k2(n− 1)(v + us) (1.13)

with us being the solution of (1.1) with ui|D = v. Under some specific conditions on the refractive

index n, it can be shown that R((F ?F )
1
4 ) = R(G). These conditions ensures that the middle
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operator T can be decomposed as T = T0 + K where T0 is coercive and K is compact non
negative.

Theorem 1.3.3. Assume that =m(n) = 0, that either <e(n−1) or <e(1−n) is definite positive,

and that problem (ITP) is well posed. Then z ∈ D if and only if Φ∞z is in the range of (F ?F )
1
4 .

The hypothesis =m(n) = 0 is required to ensure that F is normal ([29], Theorem 1.14 &
Theorem 2.25) but also to guarantee that T satisfies some technical properties ([29] Lemma 2.26
& Theorem 2.27). To use this result in practice, one could for example invoke Picard theorem
to characterize D: for p ≥ 1, let λp and ep be the eigenvalues and eigenfunctions of F , observing

that (F ?F )
1
4 has for singular system (

√
|λp|, ep, ep), we get from Picard theorem that z ∈ D if

and only if

+∞∑
p=1

|〈Φ∞z , ep〉|2

|λp|
< +∞, (1.14)

and the solution to (F ?F )
1
4 gz = Φ∞z is given by

gz =
+∞∑
p=1

〈Φ∞z , ep〉
|λp|

1
2

ep· (1.15)

In practice this infinite series is truncated so that sensitivity to noise is reduced. Another
possibility is to define the sequence gαz as solution with Tikonov regularization, namely

((F ?F )
1
2 + αI)gαz = (F ?F )

1
4 Φ∞z (1.16)

which allows to deal with noisy measurements by adapting α to the noise. The solution is given
by

gαz =
+∞∑
p=1

|λp|
1
2

|λp|+ α
〈Φ∞z , ep〉ep (1.17)

and we have the following, z ∈ D if and only if lim
α→0
‖gαz ‖L2(Sd−1) = +∞.

The F] method

The F] method is a second version of the factorization that does not require F to be normal,
hence it allows to weaken the assumptions of the theorem above on the refractive index. It also
relies on the second factorization of F . Defining the operator F θ] := |<e(eiθF )| + |=m(F )| for
θ ∈ [0, π], it can be shown that

Theorem 1.3.4. Assume that =m(n) ≥ 0 and that there exists θ ∈ [0, π] such that
<e
(
eiθ(n− 1)

)
> ε > 0 in D for some constant ε. Assume in addition that (ITP) is well posed.

Then z ∈ D if and only if Φ∞z is in the range of (F θ] )
1
2 .

As for the (F ?F )
1
4 method, one can use Picard Theorem or a Tikhonov regularization, for

this, (λp, ep) has only to be replaced by the pairs of eigenvalues and eigenfunctions of the self-
adjoint and positive operator F θ] .
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1.3.3 The generalized linear sampling method

Presentation of the method

A more recent method, the Generalized Linear Sampling Method introduced by Audibert-Haddar
[10], also gives an exact characterization of D in terms of F but also relaxes the assumption of
Theorem 1.3.3 concerning the refractive index n. Inspired by the LSM it is also based on the
solvability of the far field equation Fg = Φ∞z , the difference being that the regularization of the
latter equation uses a penalty term that controls ‖Hgαz ‖2L2(D) instead of the classical Tikhonov

regularization. For this, it is assumed that <e(n−1)+µ=m(n) or <e(1−n)+µ=m(n) is positive
definite on D for some constant µ > 0. Then the operator T is coercive in the following sense:

∃C > 0, ∀ϕ ∈ R(H), |〈Tϕ, ϕ〉L2(D)| ≥ ‖ϕ‖2L2(D). (1.18)

Consequently, according to the second factorization (1.12), the quantities ‖Hgαz ‖2L2(D) and

|〈Fg, g〉L2(Sd−1)| are equivalent. Hence |〈Fg, g〉L2(D)| can be used as a penalty term to the far
field equation. Therefore we define

Jαz (g) = α|〈Fg, g〉L2(Sd−1)|+ ‖Fg − Φ∞z ‖2L2(Sd−1). (1.19)

Let gαz be a minimizing sequence of Jαz that satisfies

Jαz (gαz ) ≤ inf
g∈L2(Sd−1)

Jαz (g) + Cα. (1.20)

We then have the following result,

Theorem 1.3.5. Assume that k is such that (ITP) is well posed and that <e(n− 1) + µ=m(n)
or <e(1 − n) + µ=m(n) is positive definite on D for some constant µ > 0. Then z ∈ D if and
only if lim sup

α→0
|〈Fg, g〉L2(Sd−1)| < +∞.

The penalty term |〈Fg, g〉| can be replaced by any other quantity that is equivalent to

‖Hgαz ‖2L2(D) (and that can be computed from F ). For instance the penalty |〈(F ?F )
1
4 g, g〉| is

valid and leads to the factorization method indicator. Another possibility is to choose |〈F]g, g〉|
as a penalty term where F] = |12(F + F ?)|+ | 1

2i(F − F
?)|.

Determination of transmission eigenvalues from far field data

The failure of the reconstruction algorithms at wave numbers k that are transmission eigenvalues
have eventually led to the development of ways to determine transmission eigenvalues from far
field data. This first result stems from the LSM. It allows to detect transmission eigenvalues k
that are not non-scattering wave numbers, that are more specific transmission eigenvalues for
which the eigenfunction v is moreover a Herglotz wave function.

Theorem 1.3.6. Assume that (n − 1) is positive definite or negative definite on D, that k is
not a non-scattering wave number. Then for any ball B ⊂ D, lim

α→0
‖Hgαz ‖L2(D) is bounded for

a.e z ∈ B if and only if k is not a transmission eigenvalue.

The first weak point of this result is the assumption made on k. On this issue we men-
tion that the set of non-scattering wave numbers has been shown to be empty [13] when the
scattering object has corners and that the only known case for which the set of non scattering
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wave number is non-empty is the sphere with constant refractive index. Once again the quan-
tity lim

α→0
‖Hgαz ‖L2(D) cannot be computed since the operator H is unknown and is replaced by

lim
α→0
‖gαz ‖L2(Sd−1) in practice, and transmission eigenvalues are detected by peaks in the curve

k 7→
∫
B
‖gαz ‖L2(Sd−1) dz (1.21)

for small values of α. Another possibility could be to first determine the shape D with some
sampling method which would give access to the right quantity lim

α→0
‖Hgαz ‖L2(D). However, the

GLSM framework provides a more direct characterization of TEs which is stated by the following
theorem.

Theorem 1.3.7. Assume that (n − 1) is positive definite or negative definite on D, that k is
not a non-scattering wave number. Then for any ball B ⊂ D, lim

α→0
〈F]gαz , gαz 〉L2(D) is bounded for

a.e z ∈ B if and only if k is not a transmission eigenvalue.

In the next section, the three mentioned methods, LSM, FM and GLSM, are explicited in a
particular setting.

1.4 Explicit computations in a simple case

In this section, we consider the scattering problem in a particular setting of the two dimensional
case, where the medium is delimited by a disk and has a constant refractive index. This setting
allows to compute the eigenvalues of the far field operator, and to write explicitly the different
indicator functions of D given by the sampling methods. We retrieve through these computations
the theoretical results of the previous section and also discuss the optimality of the assumptions
on the refractive index.

1.4.1 Expression of the scattered field for a disk

We consider the particular scattering problem by a disk shaped medium centered at the origin
and of radius R > 0 and of constant refractive index. The index n(x) is then defined by n(x) = 1
for |x| ≥ R and n(x) = n0 ∈ C \ {1} for |x| < R. In all this section, for the sake of readability,
n will refer to the constant n0. For an incident field ui satisfying the homogeneous Helmholtz
equation in R2 we would like to find the Fourier expansion of the scattered field us ∈ H2

loc(R2)
solution of (1.1)-(1.2) in the form

us(x) =
∑
p∈Z

fp(k|x|)eipx̂ for |x| > R (1.22)

where x̂ = x/|x|. From ∆us + k2us for |x| > R we obtain that for all p ∈ Z, fp is a solution of
the Bessel equation

t2f ′′p + tf ′p(t) + (t2 − p2)fp(t) = 0 (1.23)

which admits two linearly independent solutions, the Bessel function of first kind Jp and of
second kind Yp. These functions have been massively studied in the literature, all the properties
used in this chapter are listed in [1]; for a deeper study we refer to [62]. From the asymptotic
behavior of these functions ([1] 9.2.1-9.2.2), the only possible combination of them allowing to
obtain the right asymptotic behavior (1.3) is Hp := Jp + iYp, this function is called the Hankel
function of first kind. At this point we have that the functions fp appearing in the Fourier
decomposition of us are of the form
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fp = bpHp, (1.24)

where bp are complex numbers that will be linked to the incident field ui next. Samely to us,
we obtain the following expansion for ui (the functions Yp do not appear because they have a
singularity at 0 while any entire solution of Helmholtz equation is smooth),

ui(x) =
∑
p∈Z

apJp(k|x|)eipx̂ ∀x ∈ R2, (1.25)

where ap are complex numbers. In the same way the total field is also a sum of Bessel functions
in D,

u(x) =
∑
p∈Z

cpJp(k
√
n|x|)eipx̂ ∀x ∈ D.

The regularity of us = u− ui through ∂D implies the following Cauchy conditions on ∂D,

−us + u = ui on ∂D
−∂νus + ∂νu = ∂νui on ∂D.

(1.26)

The latter implies the following relations between the Fourier coefficients of u, ui and us,(
−Hp(kR) Jp (k

√
nR)

−H ′p(kR)
√
nJ ′p(k

√
nR)

)(
bp
cp

)
= ap

(
Jp(kR)
J ′p(kR)

)
·

The coefficient bp which appears in the decomposition of us can be obtained by the use of the
Cramer formula,

bp = ap

√
nJp(kR)J ′p(k

√
nR)− J ′p(kR)Jp(k

√
nR)

Jp(k
√
nR)H ′p(kR)−

√
nJ ′p(k

√
nR)Hp(kR)

·

We now simplify the latter expression by using the recurrence relation formulas satisfied by the
Bessel functions (see [62] 2.12 p.17)

C′p(z) = Cp−1(z)− p

z
Cp(z)

where Cp denotes Jp, Yp or Hp. The numerator of bp can be simplified with

√
nJp(kR)J ′p(k

√
nR) − J ′p(kR)Jp(k

√
nR) =

√
nJp(kR)Jp−1(k

√
nR) − Jp−1(kR)Jp(k

√
nR)

and it’s denominator with

Jp(k
√
nR)H ′p(kR)−

√
nJ ′p(k

√
nR)Hp(kR) = Jp(k

√
nR)Hp−1(kR)−

√
nJp−1(k

√
nR)Hp(kR).

Finally we have

bp = ap

√
nJp(kR)Jp−1(k

√
nR)− Jp−1(kR)Jp(k

√
nR)

Jp(k
√
nR)Hp−1(kR)−

√
nJp−1(k

√
nR)Hp(kR)

·

To summarize, for a given incident field in the form (1.25) the resulting scattered field is given
with
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us(x) =
∑
p∈Z

apBp(k, n,R)Hp(k|x|)eipx̂ for |x| > R, (1.27)

where the coefficient Bp(k, n,R) is given by

Bp(k, n,R) :=

√
nJp(kR)Jp−1(k

√
nR)− Jp−1(kR)Jp(k

√
nR)

Jp(k
√
nR)Hp−1(kR)−

√
nJp−1(k

√
nR)Hp(kR)

· (1.28)

From the formulas C−p(x) = (−1)pCp(x) and Cp+1 = 2p
x Cp(x)−Cp−1(x) we decuce that B−p = Bp

and when n ∈ R simple computations shows that |Bp(k, n,R)| ≤ 1.

We finish this paragraph by linking the coefficient cp appearing in the Fourier expansion of
u to ap. Once again the Cramer formula gives

cp = ap
Jp(kR)H ′p(kR)− J ′p(kR)Hp(kR)

Jp(k
√
nR)Hp−1(kR)−

√
nJp−1(k

√
nR)Hp(kR)

·

Using the following wronskian formula,

Jp(x)Y ′p(x)− J ′p(x)Yp(x) =
2

πx
,

the numerator of cp can be simplified as follows,

Jp(kR)H ′p(kR)− J ′p(kR)Hp(kR) = Jp(kR)Y ′p(kR)− J ′p(kR)Yp(kR) =
2i

πkR
·

Finally

cp =
2iap

πkR (Jp(k
√
nR)Hp−1(kR)−

√
nJp−1(k

√
nR)Hp(kR))

·

1.4.2 Spectral properties of the far field operator

In this section the far field operator is shown to be diagonalizable in the Fourier basis of
L2([0, 2π]). After being computed, the asymptotic behavior of the sequence of eigenvalues is
established.

Diagonalization of the far field operator

Following the previous notations we recall that the polar coordinates of x ∈ R2 \ {0R2} are
denoted (|x|, x̂) ∈ R?+ × S1. The set S1 is identified with [0, 2π[ and we denote the canonical
orthonormal basis of L2([0, 2π]) with

ep(θ) =
1√
2π
eipθ ∀θ ∈ [0, 2π].

Using Jacobi-Anger formula,

eizcos(α) =
∑
p∈Z

ipJp(z)e
ipα ∀z ∈ C, ∀α ∈ R, (1.29)

the following decomposition is obtained for an incident plane wave of direction d ∈ S1 defined
by ui(d, x) = eikx.d,
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ui(d, x) = eik|x|cos(x̂−d) =
∑
p∈Z

ipJp(k|x|)2πep(−d)ep(x̂). (1.30)

According to (1.27) the associated scattered field to ui(d, ·) is

us(d, x) =
∑
p∈Z

ipBp(k, n,R)Hp(k|x|)2πep(−d)ep(x̂).

Then the asymptotic behavior of the Hankel functions implies

u∞(d, x̂) =

√
8π

k
e−

iπ
4

∑
p∈Z

Bp(k, n,R)ep(−d)ep(x̂).

Finally from definition of the far field operator we obtain

(Fep)(x̂) =

∫
S1
ep(d)u∞(d, x) d(d) =

√
8π

k
e−

iπ
4 Bp(k, n,R)ep(x̂).

Hence F is diagonal in the basis (ep)p∈Z and the associated eigenvalues are

λp =

√
8π

k
e−

iπ
4 Bp(k, n,R). (1.31)

Whether the refractive index has an imaginary part or not, the far field operator is always
normal in this setting. However, as it is known for the general case, the hypothesis of real

refractive index is required for the scattering operator S := I + 2ike−
iπ
4√

8πk
F to be unitary. Indeed

first observing that

Bp(k, n,R) =
αp

iβp − αp
(1.32)

with

αp =
√
nJp(kR)Jp−1(

√
nkR)− Jp−1(kR)Jp(

√
nkR) (1.33)

and

βp = Jp(k
√
nR)Yp−1(kR)−

√
nJp−1(k

√
nR)Yp(kR) (1.34)

one obtains the following for the eigenvalues σp of the scattering operator,

σp := 1 +
2ike−

iπ
4

√
8πk

λp = 1 + 2Bp(k, n,R) = 1 + 2
αp

−αp + iβp
=

αp + iβp
−αp + iβp

· (1.35)

The hypothesis =m(n) = 0 guarantees that αp, βp ∈ R so that |σp| = 1. This result is illustrated
in the following figures.

We finish this paragraph by mentioning that F is injective with dense range if and only if
λp(k, n,R) 6= 0 for all p ∈ Z. Since k 7→ λp(k) is analytic, this always holds true except for
a countable set of k, which will be shown be closely related to the well posedness of problem
(1.71) in a next section. This set of k will be linked to the interior transmission problem in a
next section.
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Figure 1.1: 30 first values of σp(k, n,R) for k = 10, R = 2, n = 2 (left) and n = 2 + 0.02i (right).

Asymptotic behaviour of the far field eigenvalues

We now establish the asymptotic behavior of λp when p → +∞. The knowledge of the result
will be significant to understand the indicator functions of D proposed by the sampling methods.
In view of (1.31), it is sufficient to study the behavior of the coefficient Bp(k, n,R) defined at
(1.28). To this end are introduced the two following quantities for x > 0,

Np(x) =
√
nJp(x)Jp−1(

√
nx)− Jp−1(x)Jp(

√
nx) (1.36)

and

Dp(x) = Jp(
√
nx)Hp−1(x)−

√
nJp−1(

√
nx)Hp(x) (1.37)

so that

Bp(k, n,R) =
Np(kR)

Dp(kR)
. (1.38)

We first turn our attention to (Np)p≥0. Seeking for an equivalent with formula (1.41) would
amount to zero. We recall the series expansion of Bessel functions,

Jp(x) =

+∞∑
j=0

(−1)j

j!(p+ j)!

(x
2

)p+2j
, x > 0 (1.39)

Denoting sjp = (−1)j

j!(p+j)!

(
x
2

)p+2j
the general term of the series above and splitting the sum for

r ≥ 0 gives,

Jp(x) =
r∑
j=0

sjp +
∑
j≥1

sj+rp =
r∑
j=0

sjp + srp
∑
j≥1

(−1)j
(x

2

)2j r!(p+ r)!

(j + r)!(p+ j + r)!
,

the second term of the last equation is o
p→+∞

(
srp
)
, indeed for p sufficiently large∣∣∣∣∣∣

∑
j≥1

(−1)j
(x

2

)2j r!(p+ r)!

(j + r)!(p+ j + r)!

∣∣∣∣∣∣ ≤ 1

p+ r

∑
j≥1

(
|x|
2

)2j 1

(p+ r)j−1
·
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D’Alembert criteria for convergence of series guarantees that the right hand side of the above
estimate goes to zero as p goes to infinity. Finally for r ∈ N∗, Jp(x) satisfies the following Taylor
expansion,

Jp(x) =
r∑
j=0

sjp + o
p→+∞

(
srp
)
.

Applying this result to Np(x) gives,

Np(x) = n
1
2

(
s0
p + s1

p + o
p→+∞

(
s1
p

))(
n
p−1
2 s0

p−1 + n
p+1
2 s1

p−1 + o
p→+∞

(
n
p+1
2 s1

p−1

))
−
(
s0
p−1 + s1

p−1 + o
p→+∞

(
s1
p−1

))(
n
p
2 s0
p + n

p+2
2 s1

p + o
p→+∞

(
n
p+2
2 s1

p

))
.

Keeping only the leading term gives

Np(x) ∼
p→+∞

n
p
2 (n− 1)(s0

ps
1
p−1 − s1

ps
0
p−1) = −n

p
2 (n− 1)

(x
2

)2p+1 1

p!(p+ 1)!
· (1.40)

We now turn our attention to Dp(x). From the behaviour of Bessel functions for large order

Jp(x) ∼
p→+∞

1

p!

(x
2

)p
and Yp(x) ∼

p→+∞
−(p− 1)!

π

(x
2

)−p
, (1.41)

the following asymptotics are easily derived,

Jp(
√
nx)Yp−1(x) ∼

p→+∞
− n

p
2x

2πp2
and

√
nJp−1(

√
nx)Yp(x) ∼

p→+∞
−2n

p
2

πx
· (1.42)

From (1.41)-(1.42) it is obvious that when p is large, the quantity
√
nJp−1(

√
nx)Yp(x) dominates

the three terms Jp(
√
nx)Yp−1(x), Jp(

√
nx)Jp−1(x) and

√
nJp−1(

√
nx)Jp(x). Consequently,

Dp(x) ∼
p→+∞

−i
√
nJp−1(

√
nx)Yp(x) ∼

p→+∞

2in
p
2

πx
· (1.43)

Finally from (1.40) and (1.43) we deduce that

Bp(k, n,R) =
Np(kR)

Dp(kR)
∼

p→+∞
iπ(n− 1)

(
kR

2

)2(p+1) 1

p!(p+ 1)!
· (1.44)

Hence from (1.31) and (1.44), the following asymptotics for the eigenvalues of the far field
operator is straightforward,

λp ∼
p→+∞

√
8π3

k
(n− 1)ei

π
4

(
kR

2

)2(p+1) 1

p!(p+ 1)!
· (1.45)

This result will be useful for the study of the sampling methods. Before doing so we point out
that the equivalent (1.45) for λp can be used to determine the refractive index of a material
having a circular shape, provided that the radius R is known.
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1.4.3 Study of the sampling methods

Now that has been determined a basis on which F is diagonal and the associated eigenvalues,
the indicator functions of the sampling methods for D can be computed. The explicit formulas
in this situation gives the possibility to seek for more precise estimates such as the speed of
blow up of the indicators when α → 0 for z /∈ D; speed of blow up of the indicator when
z → ∂D−; determine the most optimal indicator of the presented method; more challenging,
find an optimal way to choose α for noisy measurements. To simplify the computations, the
constant η2 in (4.22) is dropped. We define φz by

φz(x̂) := e−ikz·x̂. (1.46)

and consider the far field equation

Fg = φz. (1.47)

This does not change the theoretical results and affect the following computations only by the
multiplicative constant η2.

The Linear Sampling Method

Let z ∈ R2 and denote by gαz the solution of the Tikhonov regularization of the far field equation
Fg = φz. It can be shown that gαz is given by [82]

gαz = (F ?F + αI)−1F ?φz.

By using the basis of eigenvectors of F , the function gαz can easily be written as follows,

gαz =
∑
p∈Z

λp
|λp|2 + α

〈φz, ep〉ep. (1.48)

On the one hand, from the definition of H (1.8) and formula (1.30), we obtain that for all x ∈ R2,

(Hep)(x) =

∫
S1

eipd√
2π
eikx.d d(d) =

∫
S1

eipd√
2π

∑
q∈Z

iqJq(k|x|)eiq(x̂−d) d(d).

Consequently,

(Hep)(x) = 2πipJp(k|x|)ep(x̂). (1.49)

On the other hand the conjugation of Jacobi-Anger formula gives,

φz(x̂) =
∑
q∈Z

(−i)qeiqx̂Jq(k|z|)e−iqẑ

so that (after integrating with respect to x̂)

〈φz, ep〉 =
√

2π(−i)pJp(k|z|)e−ipẑ. (1.50)

The combination of (1.48),(1.49) and (1.50) leads to

Hgαz (x) = (2π)
3
2

∑
p∈Z

λpJp(k|x|)Jp(k|z|)e−ipẑ

|λp|2 + α
ep(x̂),

from which we easily obtain
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‖Hgαz ‖
2
L2(D) =

∫ R

0
|x| d|x|

∫
S1
Hgαz (x)Hgαz (x) dx̂

= (2π)3

∫ R

0
|x| d|x|

∑
p∈Z

|λp|2Jp(k|x|)2Jp(k|z|)2

(|λp|2 + α)2

 .

We finally deduce after a change of variable in the integral above that

‖Hgαz ‖
2
L2(D) =

(2π)3

k2

∑
p∈Z

|λp|2Jp(k|z|)2

(|λp|2 + α)2

∫ kR

0
Jp(r)

2r dr. (1.51)

We now study the convergence of (‖Hgαz ‖
2
L2(D))α>0 when α goes to zero, the result will depend

as expected on |z|. The absolute convergence of series (1.39) allows to write the following with
the previous notations for sjp

Jp(x)2 =
∑

(j,m)∈N2

sjps
m
p =

∑
l∈N

∑
j+m=l

(−1)l

j!m!(p+ j)!(p+m)!

(x
2

)2(p+l)

Then ∫ kR

0
Jp(x)2x dx =

∑
l∈N

∑
j+m=l

(−1)l × 2

j!m!(p+ j)!(p+m)!(p+ l + 1)

(
kR

2

)2(p+l+1)

=
2

p!(p+ 1)!

(
kR

2

)2(p+1)

(1 + ε(p)) .

We have

|ε(p)| =
∑
l∈N?

∑
j+m=l

p!2(p+ 1)

j!m!(p+ j)!(p+m)!(p+ l + 1)

(
kR

2

)2l

≤ 1

(p+ 1)

∑
l∈N?

l + 1

(p+ 1)l−1

(
kR

2

)2l

.

The d’Alembert criteria implies that ε(p)→ 0 when p→ +∞. Consequently∫ kR

0
J2
p (r)r dr ∼

p→+∞

2

p!(p+ 1)!

(
kR

2

)2p+2

.

Now for α > 0 the series (1.51) is easily seen to be convergent whereas for α = 0, its general
term satisfies

Jp(k|z|)2

|λp|2

∫ kR

0
Jp(r)

2r dr ∼
p→+∞

p+ 1

kπ3R2|n− 1|2

(
|z|
R

)2p

.

We recover the result of the LSM, ‖Hgαz ‖
2
L2(D) converges when α → 0 iff |z| < R and the limit

l(z) is

∀z ∈ B(0, R), l(z) =
(2π)3

k2

∑
p∈Z

Jp(k|z|)2

|λp|2

∫ kR

0
Jp(r)

2r dr.

As mentionned before, one does not have access to the operator H and rather compute ‖gαz ‖2L2(S1)
for small value of α given by



34 1 Sampling methods

‖gαz ‖2L2(S1) = 2π
∑
p∈Z

|λp|2J2
p (k|z|)

(|λp|2 + α)2
. (1.52)

This quantity is defined for all z ∈ R2 and it’s behavior with respect to z is not clear. Furthermore
the limit when α goes to zero never exists, formally one can obtain from (1.48) that

lim
α→0
‖gαz ‖2L2(S1) = 2π

∑
p∈Z

J2
p (k|z|)
|λp|2

, (1.53)

the general term of this series decreases less rapidly than the one of the original indicator l(z).
More precisely, with the use of (1.41) and (1.45),

J2
p (k|z|)
|λp|2

∼
p→+∞

k(p+ 1)!2

(2π)3|n− 1|2

(
2

kR

)4( 2|z|
kR2

)2p

.

This series never converges (except for z = 0) indicating that a solution to the far field equation
Fg = φz that would be given by ∑

p∈Z

〈φz, ep〉
λp

ep (1.54)

never exists.
Despite this weak point, LSM remains a quick and simple method and numerical results show

that it is reliable in a first approach to localize an inhomogeneity and/or determine number of
connected components of an inhomogeneity. We carry on the investigation of the factorization
method and GLSM.

The Factorization Method

The factorization method consists in solving the equation (F ?F )
1
4 g = φz. Since (F ?F )

1
4 is

diagonalizable in the basis (ep)p∈Z with the corresponding eigenvalues
√
|λp|. According to the

Picard theorem, there exist a solution to this equation if and only if

ϕz :=

+∞∑
p=1

|〈φz, ep〉|2

|λp|
< +∞. (1.55)

By using the relation (1.50), the expression of ϕz can be simplified as follows,

ϕz = 2π

+∞∑
p=1

J2
p (k|z|)
|λp|

. (1.56)

Compared to the series (1.53), the general term of the series above goes (quite rapidly) to zero,
more precisely it has the following asymptotic,

J2
p (k|z|)
|λp|

∼
p→+∞

√
k(p+ 1)√
2π|n− 1|

(
kR

2

)2( |z|
R

)2p

(1.57)

Consequently we obtain the expected result, ϕz < +∞ if and only if z ∈ D. As mentioned above,
one can rather use a Tikhonov regularization of (F ?F )

1
4 g = φz which consists in minimizing the

cost function
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Jαz = α‖g‖2L2(S1) + ‖(F ?F )
1
4 g − φ‖2L2(S1). (1.58)

The minimizer gαz of Jαz satisfies the following normal equation associated to Jαz ,

(F ?F )
1
2 gαz + αgαz = (F ?F )

1
4φz, (1.59)

and

gαz = ((F ?F )
1
2 + αI)−1(F ?F )

1
4φz. (1.60)

We deduce that

gαz =
∑
p∈Z

|λp|
1
2

|λp|+ α
〈φ, ep〉ep (1.61)

and

‖gαz ‖2L2(S1) = 2π
∑
p∈Z

|λp|J2
p (k|z|)

(|λp|+ α)2
(1.62)

Since lim
α→0
‖gαz ‖2L2(S1) = ϕz (see (1.56)), the use of the Tikhonov regularization provides exactly

the same indicator function for D, that we recall in terms of lim
α→0
‖gαz ‖2L2(S1) = ϕz:

lim
α→0
‖gαz ‖2L2(S1) < +∞ ⇐⇒ z ∈ D. (1.63)

Note that the (F ?F )
1
4 method works in our setting even if n has an imaginary part, although

F is not normal in this case.

The Generalized Linear Sampling Method

To simplify the computations, we opted for the presentation of the regularization of the far field
equation with the penalty term |〈F ]g, g〉| where F ] = |12(F +F ?)|+ | 12i(F −F

?)| or equivalently
by

F ]g =
∑
p∈Z

σp〈g, ep〉L2(S1)ep, ∀g ∈ L2(S1), (1.64)

where σp = |<e(λp)|+ |=m(λp)|. The functional

Jαz (g) = α〈F ]g, g〉L2(Sd−1) + ‖Fg − φz‖2L2(Sd−1). (1.65)

has a minimizer which is given by

gαz =
∑
p∈Z

λp〈φz, ep〉
|λp|2 + ασp

ep (1.66)

and

〈F ]gαz , gαz 〉L2(Sd−1) =
∑
p∈Z

σp|λp|2J2
p (k|z|)

(|λp|2 + ασp)2
. (1.67)

Since |λp| ≤ σp ≤
√

2|λp|, the general term of this series satisfies for α = 0,
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J2
p (k|z|)
|λp|

≤
σpJ

2
p (k|z|)
|λp|2

≤
√

2
J2
p (k|z|)
|λp|

(1.68)

Consequently the quantity lim
α→0
〈F ]gαz , gαz 〉L2(Sd−1) is equivalent to the quantity ϕz defined by

(1.55), and is bounded if and only if z ∈ D according to the study of the factorization method
in the previous paragraph. Once again we point out that the hypothesis on the refractive index
is not required.

For later use we mention that the quantity Hgαz is known to be converging to the solution
of (ITP) with (f, g) = (Φz |∂Ω, ∂νΦz |∂Ω). By using relations (1.49) and (1.50), we first obtain

Hgαz = (2π)
3
2

∑
p∈Z

λpJp(k| · |)Jp(k|z|)e−ipẑ

|λp|2 + ασp
ep, (1.69)

Then letting α→ 0, we obtain for |z| < R,

lim
α→0

Hgαz = (2π)
3
2

∑
p∈Z

Jp(k| · |)Jp(k|z|)e−ipẑ

λp
ep (1.70)

1.4.4 The interior transmission problem

Transmission eigenvalues

The interior transmission problem in the setting of a disk of radius R denoted BR and constant
refractive index n is the following: for given f ∈ H3/2(∂BR) and g ∈ H1/2(∂BR), find (u, v) ∈
L2(BR)× L2(BR) such that u− v ∈ H2(D) and

∆u+ k2nu = 0 in BR
∆v + k2v = 0 in BR

u− v = f on ∂BR
∂ν(u− v) = g on ∂BR.

(1.71)

As we will see this problem always admits a unique couple of solution (u, v) except for particular
values of k, more precisely and at is will be clearer later, when k belongs to the set of transmission
eigenvalues defined by the following.

Definition 1.4.1. k > 0 is said to be a transmission eigenvalue if and only if there exist a non
trivial solution to (1.71) for f = g = 0.

As in the previous section it can be shown that the solutions u and v can be decomposed as
a sum of Bessel functions by the following means,

v(x) =
∑

p∈Z vpJp(k|x|)eipx̂ ∀x ∈ BR
u(x) =

∑
p∈Z upJp(k

√
n|x|)eipx̂ ∀x ∈ BR.

(1.72)

Denoting

fp =

∫ 2π

0
f(R, x̂)ep(x̂) dx̂ and gp =

∫ 2π

0
g(R, x̂)ep(x̂) dx̂, (1.73)

the transmission conditions in (1.71) give(
Jp(k
√
nR) −Jp(kR)

k
√
nJ ′p(k

√
nR) −kJ ′p(kR)

)(
up
vp

)
=

(
fp
gp

)
. (1.74)
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There exists a unique solution to the interior transmission problem (1.71) if and only if the
couple (up, vp) can be uniquely defined for all p ∈ Z by the above system or equivalently if

Jp(kR)
√
nJ ′p(k

√
nR)− Jp(k

√
nR)J ′p(kR) 6= 0 ∀p ∈ Z. (1.75)

This first indicates that

k is not a transmission eigenvalue ⇐⇒ (1.71) is well posed.

Now using the formula J ′p(x) = Jp−1(x) − p
xJp(x), the quantity (1.75) is seen to be equal to

the numerator of Bp(k, n,R) defined by (1.28). Consequently, the transmission eigenvalues
correspond to the zeros of the function k 7→ Bp(k, n,R). Since the latter function is analytic,
we first deduce that the set of transmission eigenvalues is discrete. Furthermore, since the
eigenvalues λp(k, n,R) of F are equal to Bp(k, n,R) up to a nonzero multiplicative parameter
(see (1.31)), we moreover have

k is not a transmission eigenvalue ⇐⇒ F is injective with dense range.

This property is remarkable. It stipulates that all transmission eigenvalues correspond to values
of k for which F is non injective. Yet it is known that F is not injective if and only if k is not a
non scattering wavenumber [29, Theorem 1.43]. These are particular transmission eigenvalues k
for which the associated eigenvector v solution to (1.71) with f = g = 0, can be extended to an
entire solution to Helmholtz equation. Consequently, in the case of a disk of constant refractive
index, every transmission eigenvalue is a non scattering wave number. We mention that this
result is known to be true for any spherically stratified medium.

The far field equation

We turn back our attention to the far field equation, let z ∈ BR and consider Φz the fundamental
solution of Helmholtz equation, given in the two dimensional case by,

Φz(x) =
i

4
H0(k|x− z|) ∀x ∈ R2 \ {z}. (1.76)

Assume that the interior transmission is well posed, as mentioned at the beginning of subsection
1.3.1, the solution vz of the equation Gvz = Φ∞z is the solution of the interior transmission
problem with f = Φz and g = ∂νΦz. To compute the coefficients fp and gp we use the addition
formula,

H0(k|x− z|) =
∑
p∈Z

Jp(k|z|)e−ipẑHp(k|x|)eipx̂ (1.77)

we deduce that

fp =
i
√

2π

4
Jp(k|z|)e−ipẑHp(kR) and gp =

i
√

2π

4
Jp(k|z|)e−ipẑkH ′p(kR). (1.78)

We now search an expression for vz in the form (1.72). Thanks to the system of equations (1.74),
the coefficients vp are given by
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vp =
Jp(k
√
nR)gp − k

√
nJ ′p(k

√
nR)fp

Jp(kR)k
√
nJ ′p(k

√
nR)− Jp(k

√
nR)kJ ′p(kR)

=
i
√

2π

4

Jp(k
√
nR)H ′p(kR)−

√
nJ ′p(k

√
nR)Hp(kR)

Jp(kR)
√
nJ ′p(k

√
nR)− Jp(k

√
nR)J ′p(kR)

Jp(k|z|)e−ipẑ

=
i
√

2π

4

1

Bp(k, n,R)
Jp(k|z|)e−ipẑ

=
πe

iπ
4

√
k

1

λp
Jp(k|z|)e−ipẑ.

(1.79)

We finally obtain

vz = η2(2π)
3
2

∑
p∈Z

Jp(k|z|)e−ipẑJp(k|x|)
λp

eipx̂· (1.80)

We recognize the L2(D) limit of Hgαz where gαz is the solution of the GLSM regularization
(1.70). The rate of convergence of Hgαz to vz is important to understand while implementing
the Differential Linear Sampling Method (DLSM) [9] which is based on the computation of the
solution of the transmission problem to identify defects in a material. Even in our simple setting,
establishing a sharp result on the rate of the convergence is not an easy task but we give a first
answer to this issue. We more precisely show that the rate of convergence ‖vz−Hgαz ‖L2(D) when
α→ 0 is slower than α. From (1.69) and (1.80) we obtain (up to a constant)

vz −Hgαz = α
∑
p∈Z

λpσpJp(k|z|)e−ipẑJp(k|x|)
|λp|2(|λp|2 + ασp)

eipx̂, (1.81)

then

‖vz −Hgαz ‖2L2(D) =
α2

k2

∑
p∈Z

|λp|2|σp|2J2
p (k|z|)

|λp|4(|λp|2 + ασp)2

∫ kR

0
Jp(r)

2r dr

 . (1.82)

We show that the series appearing under the brackets goes to infinity when α → 0. Indeed, by
using (1.45) and (1.4.3), we obtain the following asymptotic (we also recall that λp ≤ σp ≤

√
2λp),

|σp|2J2
p (k|z|)
|λp|6

∫ kR

0
Jp(r)

2r dr ∼
p→+∞

C(k, n)(p+ 1)3p!4
(
|z|
R

)2p

. (1.83)

We then conclude with the D’Alembert criteria. Finally we have shown that

‖vz −Hgαz ‖
α

−→
α→0

+∞. (1.84)
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2.1 Introduction

This work is a contribution to sampling methods in inverse scattering theory when the issue
is to determine the shape of an unknown background from fixed frequency multi-static data.
The Factorization Method (FM) and the Generalized Linear Sampling Method (GLSM), which
are methods among the class of the sampling methods, have shown good results in solving this
problem [83, 10]. The FM has been justified for different complex backgrounds, allowing one to
implement it in practical applications such as geophysics or nondestructive testing. We mention
for instance the papers [86, 15, 122] where backgrounds made of both impenetrable obstacles
and inhomogeneous medium are considered. The GLSM implementation mainly requires two
complementary factorizations of the far field operator, one used in the Linear Sampling Method
(LSM) and another used in the FM. As a consequence, the GLSM can be used as soon as the
use of the FM is valid. Furthermore, the GLSM has provided the possibility to identify changes
of the refractive index in a given inhomogeneity. The method is described by the Differential
Linear Sampling Method (DLSM) [9] which requires the knowledge of far field measurements
collected before and after the occurrence of the degradation. A natural research perspective is
to adapt the DLSM for the identification of emergence of impenetrable defects in a surveyed
material.

We consider the problem of detecting the presence of sound-hard cracks in a non homoge-
neous reference medium from the measurement of multi-static far field data. First, we provide
a factorization of the far field operator in order to implement the Generalized Linear Sampling

39



40 2 Detecting sound-hard cracks in isotropic inhomogeneities

Method (GLSM). The justification of the analysis is also based on the study of a special interior
transmission problem. This technique allows us to recover the support of the inhomogeneity of
the medium but fails to locate cracks. In a second step, we consider a medium with a multi-
ply connected inhomogeneity assuming that we know the far field data at one given frequency
both before and after the appearance of cracks. Using the Differential Linear Sampling Method
(DLSM), we explain how to identify the component(s) of the inhomogeneity where cracks have
emerged. The theoretical justification of the procedure relies on the comparison of the solutions
of the corresponding interior transmission problems without and with cracks. Finally we illus-
trate the GLSM and the DLSM providing numerical results in 2D. In particular, we show that
our method is reliable for different scenarios simulating the appearance of cracks between two
measurements campaigns.

2.2 The forward scattering problem

Ω

D

Γ

ν

ν

Figure 2.1: Example of setting in R2.

We consider an isotropic medium embedded in Rd, d = 2 or 3, containing sound-hard cracks.
Following [24], a crack Γ is defined as a portion of a smooth nonintersecting curve (d = 2) or
surface (d = 3) that encloses a domain Ω, such that its boundary ∂Ω is smooth. We assume
that Γ is an open set with respect to the induced topology on ∂Ω. The normal vector ν on
Γ is defined as the outward normal vector to Ω (see Fig. 6.1). To define traces and normal
derivatives of functions on Γ, we use the following notation for all x ∈ Γ:

f±(x) = lim
h→0+

f(x± hν(x)) and ∂±ν f(x) = lim
h→0+

ν(x).∇f(x± hν(x)).

We shall also work with the jump functions

[f ] := f+ − f− and

[
∂f

∂ν

]
:= ∂+

ν f − ∂−ν f.

We assume that the propagation of waves in time harmonic regime in the reference medium is
governed by the Helmholtz equation ∆u+k2u = 0 in Rd where ∆ stands for the Laplace operator
of Rd and where k is the wave number. We assume that the cracks are embedded in a local
perturbation of the reference medium. To model this perturbation, we introduce n ∈ L∞(Rd) a
complex valued coefficient (the refractive index of the medium) such that n = 1 in Rd \D and
n 6= 1 in D. Here D ⊂ Rd is a bounded domain with Lipschitz boundary ∂D such that Rd \D
is connected. We assume that =m(n) ≥ 0 in Rd and that Γ ⊂ D. The scattering of the incident
plane wave ui(θ, ·) := eikθ·x of direction of propagation θ ∈ Sd−1 by the medium is described by
the problem

Find u = ui + us such that

∆u+ k2nu = 0 in Rd \ Γ

∂±ν u = 0 on Γ

lim
r→+∞

r
d−1
2

(
∂us
∂r
− ikus

)
= 0,

(2.1)
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with ui = ui(θ, ·). The last line of (2.1), where r = |x|, is the Sommerfeld radiation condition
which selects the outgoing scattered field and which is assumed to hold uniformly with respect
to x̂ = x/|x| ∈ Sd−1. For all k > 0, Problem (2.1) has a unique solution u belonging to H1(O\Γ)
for all bounded domain O ⊂ Rd. The scattered field us(θ, ·) has the expansion

us(θ, x) = ηde
ikrr−

d−1
2

(
u∞s (θ, x̂) +O(1/r)

)
, (2.2)

as r → +∞, uniformly in x̂ = x/|x| ∈ Sd−1. In (2.2) the constant ηd is given by ηd = ei
π
4 /
√

8πk
for d = 2 and by = 1/(4π) for d = 3. The function u∞s (θ, ·) : Sd−1 → C, is called the far field
pattern associated with ui(θ, ·). From the far field pattern, we can define the far field operator
F : L2(Sd−1)→ L2(Sd−1) such that

(Fg)(x̂) =

∫
Sd−1

g(θ)u∞s (θ, x̂) ds(θ). (2.3)

By linearity, the function Fg corresponds to the far field pattern of the scattered field in (2.1)
with

ui = vg :=

∫
Sd−1

g(θ)eikθ·x ds(θ) (Herglotz wave function). (2.4)

2.3 Factorization of the far field operator

In this section we explain how to factorize the far field operator F defined in (2.3). From the
Green representation theorem, computing the asymptotic behaviour of the Green’s function as
r → +∞ gives

u∞s (x̂) =

(
k2

∫
D

(n(y)− 1)u(y)e−ikx̂y dy +

∫
Γ
[u(y)]∂+

ν(y)e
−ikx̂y ds(y)

)
(2.5)

for the far field pattern of us in (2.2). A first step towards the factorization of F is to define the
Herglotz operator H : L2(Sd−1)→ L2(D)× L2(Γ) such that

Hg = (vg |D, ∂
+
ν vg |Γ). (2.6)

We give in Proposition 2.3.1 below a characterization of the closure of the range of H. Set

H =
{
v ∈ L2(D) |∆v + k2v = 0 in D

}
. (2.7)

and define the map Ψ : H → L2(D)× L2(Γ) such that

Ψv = (v|D, ∂
+
ν v|Γ). (2.8)

Proposition 2.3.1. The operator H : L2(Sd−1) → L2(D) × L2(Γ) defined in (2.6) is injective
and R(H) = Ψ(H ).

Proof. The proof of the injectivity of H follows a classical argument based on the Jacobi Anger
expansion (apply [29, Lemma 2.1]). To establish the second part of the claim, first we note
that vg (defined in (2.4)) belongs to H so that R(H) ⊂ Ψ(H ). On the other hand, classical
results of interior regularity ensure the existence of some constant C > 0 such that ‖∂νv‖L2(Γ) ≤
C‖v‖L2(D) for all v ∈ H . This in addition to ‖Ψv‖L2(D\Γ)×L2(Γ) ≥ ‖v‖L2(D) allows one to

show that Ψ(H ) is a closed subspace of L2(D) × L2(Γ). The regularity result implies that
Ψ : (H , ‖ · ‖L2(D)) → L2(D) × L2(Γ) is continuous. Since the set of Herglotz wave functions is

dense in (H , ‖ · ‖L2(D)), we deduce that R(H) = Ψ(H ).
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Next we define the operator G : R(H)→ L2(Sd−1) such that

G(v, ∂+
ν v) = u∞s , (2.9)

where u∞s is the far field pattern of us, the outgoing scattered field which satisfies

∆us + k2nus = k2(1− n)v in Rd \ Γ

∂±ν us = −∂±ν v on Γ.
(2.10)

Note that if (v, ∂+
ν v) ∈ R(H) then interior regularity implies ∂+

ν v = ∂−ν v on Γ. We also define
the map T : L2(D \ Γ)× L2(Γ)→ L2(D \ Γ)× L2(Γ) such that

T (v, ∂+
ν v) = (k2(n− 1)(v + us), [v + us]). (2.11)

Clearly we have F = GH. And one can check using (2.5) that G = H∗T so that F admits the
factorization

F = H∗TH. (2.12)

The justification of the techniques we propose below to recover the cracks will depend on the
properties of the operators G, T . And the latter are related to the solvability of the so-called
interior transmission problem which in our situation states as follows: given f ∈ H3/2(∂D), g ∈
H1/2(∂D)

Find (u, v) ∈ L2(D)× L2(D) such that

u− v ∈ {ϕ ∈ H1(D \ Γ) |∆ϕ ∈ L2(D \ Γ)}
∆u+ k2nu = 0 in D \ Γ u− v = f on ∂D

∆v + k2 v = 0 in D ∂νu− ∂νv = g on ∂D

∂±ν u = 0 on Γ.

(2.13)

We shall say that k > 0 is a transmission eigenvalue if (2.13) with f = g = 0 admits a
non zero solution. One can show for example that if the coefficient n is real and satisfies
1 < n∗ < n < n∗ for some constants n∗, n

∗ , then the set of transmission eigenvalues is discrete
without accumulation point and that Problem (2.13) is uniquely solvable if and only if k is
not a transmission eigenvalue (this will be part of a future work). We shall say that (2.13) is
well-posed if it admits a unique solution for all f ∈ H3/2(∂D), g ∈ H1/2(∂D).

Proposition 2.3.2. Assume that k > 0 is not a transmission eigenvalue. Then the operator
G : R(H)→ L2(Sd−1) is compact, injective with dense range.

Proof. First we show the injectivity of G. Let V = (v, ∂+
ν v) ∈ R(H) such that GV = 0. Then

from the Rellich lemma, the solution us of (2.10) is zero in Rd \ D. Therefore, if we define
u = v+us, then the pair (u, v) satisfies the interior transmission problem (2.13) with f = g = 0.
Since we assumed that k > 0 is not a transmission eigenvalue, we deduce that v = 0 and so
V = 0.
Now we focus our attention on the denseness of the range of G. First we establish an identity
of symmetry. Let V1 = (v1, ∂

+
ν v1), V2 = (v2, ∂

+
ν v2) ∈ R(H). Denote w1, w2 the corresponding

solutions to Problem (2.10). In particular we have

∆w1 + k2nw1 = k2(1− n)v1, ∆w2 + k2nw2 = k2(1− n)v2 in Rd \ Γ. (2.14)
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Multiplying the first equation by w2 and the second by w1, integrating by parts the difference
over BR, the open ball of radius R centered at O, we obtain

k2

∫
D

(n− 1)(v1w2 − v2w1) dx

=

∫
∂BR

(∂νw1w2 − w1∂νw2) ds(x) +

∫
Γ
([w2]∂+

ν v1 − [w1]∂+
ν v2) ds(x).

Taking the limit as R → +∞ and using that limR→+∞
∫
∂BR

(∂νw1w2 − w1∂νw2 ds(x) = 0 (w1

and w2 satisfy the radiation condition), we find the identity

k2

∫
D

(n− 1)v1w2 dx+

∫
Γ
∂+
ν v1[w2] ds(x) = k2

∫
D

(n− 1)v2w1 dx+

∫
Γ
∂+
ν v2[w1] ds(x). (2.15)

Using (2.15), we deduce that for φ, g ∈ L2(Sd−1), we have

〈G(Hφ), g〉L2(Sd−1)

= k2

∫
D

(n− 1)(Hφ+ us(φ))Hg dx+

∫
Γ
[Hφ+ us(φ)]∂+

ν (Hg) ds(x)s

= k2

∫
D

(n− 1)(Hg + us(g))Hφ dx+

∫
Γ
[Hg + us(g)]∂+

ν (Hφ) ds(x)

= 〈G(Hg), φ〉L2(Sd−1).

Therefore if g ∈ R(G)⊥ then G(Hg) = 0. The injectivity of G and H imply that g = 0 which
shows that G has dense range.
Finally, using again the estimate ‖∂νv‖L2(Γ) ≤ C‖v‖L2(D) for all v ∈ H , results of interior

regularity and the definition of H (see (2.6)), one can check that H : L2(Sd−1)→ L2(D)×L2(Γ)
is compact. Since G = H∗T and T is continuous, we deduce that G : L2(D)×L2(Γ)→ L2(Sd−1)
is compact.

Proposition 2.3.3. For all V = (v, ∂+
ν v) ∈ R(H), we have the energy identity

=m (〈TV, V 〉L2(D\Γ)×L2(Γ)) = k2

∫
D
=m (n)|us + v|2 dx+ k‖GV ‖2L2(Sd−1), (2.16)

where us denotes the solution of (2.10). As a consequence if =m(n) ≥ 0 a.e. in D and if k is
not a transmission eigenvalue of (2.13), then T is injective.

Proof. Multiplying by us the equation ∆us+k2us = −k2(n−1)(us+v) and integrating by parts
over the ball BR, we obtain

−k2

∫
D

(n− 1)(us + v)us dx =

−
∫
BR

(|∇us|2 − k2|us|2) dx+

∫
∂BR

∂νusus ds(x)−
∫

Γ
∂+
ν us[us] ds(x).

(2.17)

Using (2.17), then we find

〈TV, V 〉L2(D\Γ)×L2(Γ) = k2

∫
D

(n− 1)|us + v|2 dx−
∫
BR

(|∇us|2 − k2|us|2) dx

+

∫
Γ
[v + us]∂

+
ν v ds(x)−

∫
Γ
∂+
ν us[us] ds(x) +

∫
∂BR

∂νus us ds(x).
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Since ∂+
ν us = −∂+

ν v and [v] = 0 (interior regularity) on Γ, we deduce

〈TV, V 〉L2(D\Γ)×L2(Γ) = k2

∫
D

(n− 1)|us + v|2 dx−
∫
BR

(|∇us|2 − k2|us|2) dx

−2<e
(∫

Γ
[us]∂

+
ν us ds(x)

)
+

∫
∂BR

∂νusus ds(x).
(2.18)

The radiation condition (see (2.1)) implies limR→∞
∫
∂BR

∂νusus ds = ik
∫
Sd−1 |u∞s |2dθ = ik‖GV ‖2

L2(Sd−1)
.

As a consequence, taking the imaginary part of (2.18) and letting R goes to infinity, we get iden-
tity (2.16). Now if TV = 0 and if =m(n) ≥ 0 a.e. in D, then (2.16) gives GV = 0. Since G is
injective when k is not a transmission eigenvalue of (2.13) (Proposition 2.3.2), we deduce that
T is injective.

2.4 Reconstruction algorithms

For z ∈ Rd, we denote by Φ(., z) the outgoing fundamental solution of the homogeneous
Helmholtz equation such that

Φ(x, z) =
i

4
H

(1)
0 (k|x− z|) if d = 2 and

eik|x−z|

4π|x− z|
if d = 3. (2.19)

Here H
(1)
0 stands for the Hankel function of first kind of order zero. The far field of Φ(., z) is

φz(x̂) = e−ikz.x̂. The GLSM uses the following theorem whose proof is classical [29].

Theorem 2.4.1. Assume that the interior transmission problem (2.13) is well-posed. Then

z ∈ D if and only if φz ∈ R(G).

The particularity of the GLSM is to build an approximate solution (Fg ' φz) to the far field
equation by minimizing the functional Jα(φz, .) : L2(Sd−1)→ R defined by

Jα(φz, g) = α〈F ]g, g〉L2(Sd−1) + ‖Fg − φz‖2L2(Sd−1), ∀g ∈ L2(Sd−1), (2.20)

where F ] := |12(F + F ∗)|+ | 1
2i(F − F

∗)|.

Theorem 2.4.2 (GLSM). Assume that the interior transmission problem (2.13) is well-posed,
that the index n satisfies [=m(n) ≥ 0, <e(n− 1) ≥ n∗ a.e. in D ] or [=m(n) ≥ 0, <e(1− n) ≥
n∗ a.e. in D ] for some constant n∗ > 0. Let gαz ∈ L2(Sd−1) be a minimizing sequence of Jα(φz, .)
such that

Jα(φz, g
α
z ) ≤ inf

g
Jα(φz, g) + p(α), (2.21)

where p is such that lim
α→0

α−1p(α) = 0. Then

• z ∈ D if and only if lim
α→0
〈F ]gαz , gαz 〉L2(Sd−1) < +∞.

• If z ∈ D then there exists h ∈ R(H) such that φz = Gh and Hgαz converges strongly to h
as α→ 0.

Thus the GLSM, justified by this theorem, offers a way to recover D, that is to identify the
perturbation in the reference background. Note that the GLSM, contrary to the LSM, provides
an exact characterization of D. However it does not give any information on the location of the
crack Γ.
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Proof. We establish this theorem by applying the abstract result of [29, Theorem 2.10]. The
latter requires that the following properties hold.

i) F = GH = H∗TH is injective with dense range and G is compact.

ii) F ] factorizes as F ] = H∗T ]H where T ] satisfies the coercivity property

∃µ > 0, ∀V ∈ R(H), |〈T ]V, V 〉L2(D\Γ)×L2(Γ)| ≥ µ‖V ‖
2
L2(D\Γ)×L2(Γ); (2.22)

iii) V 7→ |〈T ]V, V 〉L2(D\Γ)×L2(Γ)|1/2 is uniformly convex on R(H).

Item i) is a consequence of Propositions 2.3.1, 2.3.2 and 2.3.3. Moreover, we deduce iii) from
ii) and from the fact that 〈F ]g, g〉L2(D\Γ)×L2(Γ) = ‖(F ])1/2g‖2

L2(Sd−1)
(see e.g. [29]). Therefore,

it remains to show ii). To proceed, we use [29, Theorem 2.31] which guarantees that it is true
if :

• T injective on R(H);

• =m(〈TV, V 〉L2(D\Γ)×L2(Γ)) ≥ 0 for all V ∈ R(H);

• <e(T ) decomposes as <e(T ) = T0 + C where T0 satisfies (2.22) and where C is compact
on R(H).

The first two items have been proved in Proposition 2.3.3. Let us focus our attention on the
last one. By definition, we have TV = (k2(n− 1)(v+ us), [v+ us]). Set C̃V = (k2(n− 1)us, [v+
us] − ∂+

ν v|Γ). Using results of interior regularity, one can check that C = <e(C̃) is compact.
Now, define T0 := <e(T )−C = (k2<e(n−1)v, ∂+

ν v|Γ). Clearly one has |〈T0V, V 〉L2(D\Γ)×L2(Γ)| ≥
n∗‖V ‖2L2(D\Γ)×L2(Γ) when <e(n − 1) ≥ n∗. The case <e(1 − n) ≥ n∗ can be dealt in a similar
way.

When one has only acces to a noisy version F δ of F , then F ],δ might not have the required
factorization and the cost function (2.20) must be regularized. For this aspect, we refer the
reader to [10, Section 5.2].
We now give the theoretical foundation of the DLSM which will allow us to localize the position
of the crack Γ. The DLSM relies on the comparison of the solutions of the following interior
transmission problems (without and with cracks).

P(D)

∆u0 + k2nu0 = 0 in D

∆v0 + k2v0 = 0 in D

u0 − v0 = Φz on ∂D

∂νu0 − ∂νv0 = ∂νΦz on ∂D,

PΓ(D)

∆u+ k2nu = 0 in D

∆v + k2v = 0 in D

∂±ν u = 0 on Γ

u− v = Φz on ∂D

∂νu− ∂νv = ∂νΦz on ∂D,

(2.23)

where u0, v0, u, v ∈ L2(D), u0 − v0 ∈ H2(D) and u − v ∈ H1(D \ Γ) is such that ∆(u − v) ∈
L2(D \ Γ). We split the domain D into two kinds of connected components (see Fig. 2.2): The
ones containing cracks are listed by (Dj

Γ)j ; others are listed by (Dj
0)j . And we set DΓ := ∪jDj

Γ

and D0 := ∪jDj
0 so that D = DΓ ∪D0.

Theorem 2.4.3. Assume that Γ is a part of the boundary of a domain Ω such that ∂Ω is
analytic. Assume that n is analytic in DΓ and does not vanish. Assume also that k is not a
Neumann eigenvalue for −n−1∆ in Ω and is such that both P(D) and PΓ(D) (see (2.23)) are
well-posed.

i) If z ∈ D0 then v = v0 in D. ii) If z ∈ DΓ then v 6= v0 in DΓ.
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D1
0

D2
0

D1
Γ

Figure 2.2: We split D into two families of connected components.

Proof. i) Let z ∈ D0. In D0, the equations for P(D) and PΓ(D) coincide. By uniqueness of the
solution for these problems, we deduce that v = v0 in D0. On the other hand, one observes that
(0,−Φz) satisfies the equations of P(D) and PΓ(D) in DΓ. As a consequence, by uniqueness
of the solution for these problems, we also have v = v0 = −Φz in DΓ.
ii) Now let z ∈ DΓ. We wish to show that v 6= v0 in DΓ. We proceed by contradiction assuming
that v = v0 in DΓ. Define U such that U = u − u0 in DΓ \ Γ and U = 0 in Rd \ DΓ. Since
U = ∂νU = 0 on ∂DΓ, from the unique continuation principle, we find U = 0 in Rd \ Γ and so
∂±ν u0 = 0 on Γ (because ∂±ν u = 0 on Γ). Furthermore the regularity of n implies that ∂±ν u0 is
analytic on ∂Ω and we conclude that ∂±ν u0 = 0 on ∂Ω. Since we assumed that k is not a Neumann
eigenvalue for −n−1∆ in Ω, we deduce that u0 = 0 in Ω, and by unique continuation, u0 = 0 in
DΓ. Thus we must have v0 = −Φz in DΓ which contradicts the fact that u0 − v0 ∈ H2(D).

Now we consider a first heterogeneous medium without crack with a perturbation of the
reference background supported in D modeled by some index n, and a second medium with
the same n but with an additional crack inside D. The corresponding far field operators are
denoted respectively F0 and F1. Then for j = 0, 1, let gαj,z refer to the sequences introduced in

the statement of Theorem 2.4.2 with F ]j = |12(Fj +F ∗j )|+ | 1
2i(Fj −F

∗
j )|. We also set for j = 0, 1

Aαj (z) = 〈F ]j g
α
j,z, g

α
j,z〉L2(Sd−1); Dαj (z) = 〈F ]j (gα1,z − gα0,z), (gα1,z − gα0,z)〉L2(Sd−1). (2.24)

The combination of Theorems 2.4.2 and 2.4.3 leads to the following result.

Theorem 2.4.4 (DLSM). Assume that k, n and Γ are as in Theorem 2.4.3 and that n also
satisfies the assumptions of Theorem 2.4.2. Then for j = 0 or 1[

z ∈ D0

]
⇒
[

lim
α→0
Dαj (z) = 0

]
and

[
z ∈ DΓ

]
⇒
[

0 < lim
α→0
Dαj (z) < +∞

]
.

Proof. As explained in the proof of Theorem 2.4.2, F ]1 admits a factorization of the form H∗T ]1H

where T ]1 is continuous and 〈T ]1 ·, ·〉 is coercive. According to the study of crack-free inhomoge-

neous medium a same factorization stands for F0 involving an operator T ]0 that have the same

properties of T ]1 . This implies (for j = 0 or 1) the existence of two positive constants κ and K
such that

κ‖H(gα1,z − gα0,z)‖2L2(D) ≤ D
α
j (z) ≤ K‖H(gα1,z − gα0,z)‖2L2(D). (2.25)

Now for z ∈ D, if we denote (u0, v0) (resp. (u1, v1)) the solution of P(D) (resp. PΓ(D)), then
Theorem 2.4.2 and the GLSM for the crack-free inhomogeneous medium (see the justification in
[29]) guarantee that lim

α→0
‖H(gα1,z − gα0,z)‖ = ‖H(v− v0)‖. Then the result follows from Theorem

2.4.3.

From Theorems 2.4.2 and 2.4.4, one can design indicators for D and DΓ. Set for j = 0 or 1,

IGLSM(z) = lim
α→0

1

Aα1 (z)
and IDLSM

j (z) = lim
α→0

1

Aα0 (z)
(

1 +
Aα0 (z)
Dαj (z)

) . (2.26)



2.5 Numerical results 47

For these indicators, one can show the following theorem which allows one to identify the con-
nected components of D in which some cracks have appeared.

Corollary 2.4.5. Under the assumptions of Theorem 2.4.4, we have for j = 0 or 1

• IGLSM(z) = 0 in Rd \D and IGLSM(z) > 0 in D.

• IDLSM
j (z) = 0 in Rd \DΓ and IDLSM

j (z) > 0 in DΓ.

2.5 Numerical results

To conclude this work, we apply the GLSM and the DLSM on simulated backgrounds. All
backgrounds have the same shape D constituted of three disjoint disks of radius 0.75 and of
index n = 1.5. They differ from one to another in the distribution of cracks inside the disks.
Admittedly, the straight cracks appearing in the backgrounds are not a portion of the bound-
ary of an analytic domain. However, we expect that our algorithm remains robust when this
theoretical assumption is not satisfied. For each background we generate a discretization of the
far field operator F by solving numerically the direct problem for multiple incident fields ui(θp)
with wave number k = 4π. Then we compute the matrix F = (u∞s (θp, x̂q))p,q for θp, x̂q in
{cos( 2lπ

100), sin( 2lπ
100), l = 1..100} (somehow we discretize L2(S1)). Finally, we add random noise

to the simulated F and obtain our final synthetic far field data F δ with F δpq = Fpq(1 + σN).
Here N is a complex random variable whose real and imaginary parts are uniformly chosen in
[−1, 1]2. The parameter σ > 0 is chosen so that ‖F δ − F‖ = 0.05‖F δ‖.

2.5.1 Reconstruction of the background

To handle the noise δ added on the far field data, we use a regularized version of the GLSM
consisting in finding the minimizers gα,δz of the functional

g 7→ Jα,δ(φz, g) = α(|〈F ]δg, g〉L2(Sd−1)|+ δ‖F δ‖‖g‖2L2(S2)) + ‖F δg − φz‖2L2(Sd−1),

where F ]δ := |12(F δ + F δ∗)| + | 12i(F
δ − F δ∗)|. We fit α to δ according to [10, Section 5.2]. The

new relevant indicator function for the regularized GLSM is then given by

Iα,δGLSM(z) =
1

Aα,δ(z)

where Aα,δ(z) = 〈F ]δgα,δz , gα,δz 〉L2(Sd−1) + δ‖F δ‖‖gα,δz ‖2L2(Sd−1)
.

Fig. 2.3 shows the results of GLSM indicator function z 7→ Iα,δGLSM(z) for two different con-
figurations where the second one is obtained from the first one by adding a crack to the third
component. The two other components contain the same crack. One observes that GLSM is
capable of retrieving the domain D for each configuration. We also observe how the behavior of
the indicator function is different inside the third component. This is somehow what the DLSM
exploits to isolate the component where a defect appears and this is what is discussed next.

2.5.2 Identification of sound hard crack defects in inhomogeneities

Given two far field data F δ0 and F δ1 , we respectively define F ]δ0 , g
α,δ
0,z , A

α,δ
0 (z) and F ]δ1 , g

α,δ
1,z , A

α,δ
1 (z)

associated to each data as described in the previous paragraph. We also define

Dα,δ(z) = 〈F ]0(gα,δ1,z − g
α,δ
0,z ), (gα,δ1,z − g

α,δ
0,z )〉L2(Sd−1).
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Figure 2.3: Simulated backgrounds on the left and associated GLSM indicator function z 7→ Iα,δGLSM(z)
on the right.

Then, according to (2.26), the DLSM indicator is given by

Iα,δDLSM(z) =
1

Aα,δ0 (z)
(

1 +
Aα,δ0 (z)

Dα,δ(z)

) .
The behavior of the DLSM indicator function is illustrated below for several scenarios shown in
Fig. 2.4-2.7. In each figure is presented from left to right, the initial background (associated
with F δ0 ), the damaged background (associated with F δ1 ) and the DLSM indicator function

z 7→ Iα,δDLSM(z). As expected, the latter allows us to identify for all scenarios the component(s)
DΓ where (additional) cracks appeared. We also remark that it slightly accentuates the border of
D0. But this effect is not explained by our theory and it does not contradict it: Our theoretical
result does not stipulate that the indicator function is “uniformly” close to 0 outside DΓ.

Figure 2.4: A scenario for DLSM simulating the emergence of cracks in two components of a defect free
background.

2.6 Conclusion

We analyzed the DLSM to identify emergence of cracks embedded in an unknown background
and image defective components from differential measurements of far field data at a fixed
frequency. The analysis is based on the justification of the GLSM for backgrounds with cracks
which necessitates the study of a special interior transmission problem and the derivation of
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Figure 2.5: A scenario for DLSM simulating the emergence of a crack in a healthy component of an
already damaged background.

Figure 2.6: A scenario for DLSM simulating the emergence of additional cracks in a healthy and a
damaged components of an already damaged background.

Figure 2.7: A scenario for DLSM simulating the increase of the crack size in one component of an
already damaged background.



50 2 Detecting sound-hard cracks in isotropic inhomogeneities

specific factorizations of the far field operator. The numerical tests on toy problems show that
our method is reliable for different scenarios simulating the appearance of cracks between two
measurements campaigns. This is a first step before addressing practical problems where the
issues of limited aperture data and/or highly cluttered backgrounds should be solved.
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The interior transmission problem
for penetrable obstacles with
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3.1 Introduction

The Interior Transmission Problem (ITP) has first been mentioned when developing the Linear
Sampling Method [47, 77] to retrieve the shape of penetrable inhomogeneities from far field mea-
surements. In these papers it was pointed out that the chosen wavenumber of the interrogating
waves should be different from the spectrum of the ITP which are referred as Transmission
Eigenvalues (TEs). Recently, a series of works changed the status of the TEs, it has been es-
tablished the possibility of computing TEs from far field data [28] and obtaining qualitative
information on the physical properties of the material surveyed from the knowledge of TEs
[31, 25]. Only after these results, the community has shown an interest in proving the existence
of TEs which was deemed to be a difficult problem. Proof of the existence of at least one real
TE in the general case is provided only in 2008 by Päivärinta and Sylvester [104] assuming that
the refractive index is sufficiently large. This result is complemented in the work of Cakoni,
Gintides and Haddar [33], where it is demonstrated the existence of an infinity of real TEs while
removing the condition on the refractive index. After these striking results, a huge step forward
has been made until now on the knowledge of TEs and also on their use for solving the inverse
problem. For a long time it has been required to study only materials of fixed sign contrast.
This assumption has been greatly relaxed in [37, 112], where the sign contrast is only required

51
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to be fixed in a vicinity of the boundary. The different developed frameworks to study ITP
problems has been extended to the Maxwell equations [53, 35, 49]. Furthermore, several contri-
butions have proven the relevance of using TEs to solve the inverse problem. First of all, the
theoretical justification of the determination of TEs which have been relying on the LSM was
not satisfactory because of the mentioned inherent weak point of the LSM. The determination
of TEs has been enhanced by new methods such as the GLSM and the inside-outside Duality
[10, 85, 93, 94, 95]. Secondly, many works proposed techniques using TEs to find estimates of
the material properties [22, 31, 63, 66, 32].

In this chapter we consider the ITP for isotropic inhomogeneities with sound-hard cracks
inside. This problem has been introduced in Chapter 2 while extending the Generalized Linear
Sampling Method to isotropic inhomogeneities containing sound-hard cracks. Following the
same approach proposed in [33], we show the existence of a discrete infinite set of real TEs,
provided that the refractive index n ∈ L2(D) is bounded and satisfies n > 1. In this case we
also derive Faber-Krahn type inequalities for the TEs. When n < 1, the framework we develop
do not allow to show the Fredholm property of the ITP, preventing us to answer the question of
the discreteness properties nor the existence of TEs. We point out that in the paper [32], where
the case of inhomogeneities containing sound soft obstacles is studied, a similar restriction on
the refractive index occurred as their developed framework allowed to study the case n < 1 but
not the case n > 1. Similarly to more classical situations, we also show that real TEs do not
exist if the considered isotropic medium containing the sound-hard crack is dissipative.

3.2 Setting of the problem

We consider a penetrable obstacle containing sound hard cracks. The obstacle is delimited by
a bounded domain of Lipschitz boundary D. We assume that the refractive index n ∈ L∞(Rd)
satisfies supp(n− 1) = D and =m(n) ≥ 0. The crack Γ is modelized by a non intersecting open
arc/surface which is a portion of the boundary of a Lipschitz domain Ω ⊂ D. The unit normal
vector ν on Γ is chosen to coincide with the outward normal vector to ∂Ω. For a function ψ
defined on a neighborhood of Γ, we use the same notations ψ±|Γ, ∂±ν ψ|Γ, [ψ]|Γ and [∂νψ]|Γ of the
previous chapter. The propagation of waves in the time-harmonic regime is described by

∆u+ k2n(x)u = 0 in Rd \ Γ
∂±ν u = 0 on Γ,

(3.1)

where the total field u ∈ H1
loc(Rd \Γ). Given an incident wave ui that satisfies the homogeneous

Helmholtz equation

∆ui + k2ui = 0 in Rd, (3.2)

the scattered field defined in Rd \ Γ by

us = u− ui (3.3)

satisfies

∆us + k2nus = −k2(n− 1)ui in Rd \ Γ
∂±ν us = −∂±ν ui on Γ.

(3.4)

along with the Sommerfield radiation condition

lim
r→+∞

∫
|x|=r

∣∣∣∣∂us∂r − ikus
∣∣∣∣2 dx = 0. (3.5)
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The scattered field us ∈ H2
loc(Rd \ Γ) is uniquely determined by (3.4)-(3.5).

We are interested in the existence of incident waves defined on D such that the far field of
the scattered wave us vanishes. Denoting v the incident field and u = us + v, Rellich lemma
leads to the following system of equation for u and v,

∆u+ k2nu = 0 in D \ Γ
∆v + k2v = 0 in D

∂±ν u = 0 on Γ
u− v = 0 on ∂D

∂u
∂ν −

∂v
∂ν = 0 on ∂D.

(3.6)

The purpose of this chapter is to study this problem that can be viewed as an eigenvalue problem,
i.e find k > 0 such that there exists a non trivial couple of solution (u, v) whose regularity will
be precised next.

3.3 Definition and properties of the interior transmission prob-
lem

To treat the interior eigenvalue problem (3.6), it is more convenient to understand it as a
particular case of a boundary value problem that is defined and studied in this section.

3.3.1 A weak formulation

In order to study the interior transmission eigenvalue problem (3.6) is introduced the interior

transmission problem, for given f ∈ H
1
2 (∂D) and g ∈ H−

1
2 (∂D), v ∈ L2(D) and u ∈ L2(D)

such that u− v ∈ H1
∆(D \ Γ) and

∆u+ k2nu = 0 in D \ Γ u− v = f on ∂D

∆v + k2 v = 0 in D ∂νu− ∂νv = g on ∂D,

∂±ν u = 0 on Γ

(3.7)

where

H1
∆(D \ Γ) = {w ∈ H1(D \ Γ) such that ∆w ∈ L2(D)}. (3.8)

As we will see next, the only regularity that we can expect on u − v with the variational
formulation we propose is that it belongs to the space H1

∆(D \ Γ). A classical appoach is to
define a new unknown w := u− v in order to simplify the structure of the boundary conditions
on ∂D which then reduces to

w = f on ∂D and ∂νw = g on ∂D. (3.9)

In view to reformulate the problem only in terms of w, we first observe, substracting the second
equation from the first, that

(∆ + k2n)w = −k2(n− 1)v in D \ Γ. (3.10)

Finally, assuming that 1
n−1 ∈ L

∞(D) is obtained from the equation on v a fourth order equation
for w,

(∆ + k2)(n− 1)−1(∆ + k2n)w = 0 in D \ Γ. (3.11)
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This fourth order equation has first been introduced in [113] and has been used in several works,
for instance [34],[33] and [104]. Regarding the Neumann condition, it becomes

∂±ν w + ∂±ν v = 0 on Γ. (3.12)

First note that the relation above gives sense to the original condition ∂νu = 0. Secondly, since
the interior regularity implies that ∂νv is smooth through Γ, one can derive

[∂νw] = 0 on Γ. (3.13)

The proposed weak formulation treats equation (3.11) variationally, the conditions (3.9) and
(3.12) are included in the variational space defined below. We define

V =
{
ϕ ∈ H1(D \ Γ) | ∆ϕ ∈ L2(D \ Γ), [∂νϕ]Γ = 0, ϕ = ∂νϕ = 0 on ∂D

}
.

V is equipped with the induced scalar product of H1
∆(D \ Γ):

〈ψ,ϕ〉V =

∫
D
ψϕdx+

∫
D
∇ψ∇ϕdx+

∫
D

∆ψ∆ϕdx, (3.14)

and the associated euclidian norm ‖ · ‖V =
√
〈·, ·〉V . (V, ‖ · ‖V ) is then a Hilbert space.

Let ϕ ∈ V , we integrate equation ∆v + k2v = 0 on D \ Γ (or equivalently (3.11)) against ϕ
and apply Green’s second formula to obtain

0 =

∫
D

(∆v + k2v)ϕdx

=

∫
D
v(∆ϕ+ k2ϕ) dx−

∫
Γ
∂νv[ϕ] ds(x)

=

∫
D
v(∆ϕ+ k2nϕ) dx+

∫
D
−k2(n− 1)vϕdx−

∫
Γ
∂νv[ϕ] ds(x).

(3.15)

We now develop the second term of (3.15), v is replaced using expression (3.10) then we use
Green’s first formula

∫
D
−k2(n− 1)vϕdx =

∫
D

∆wϕdx+ k2

∫
D
nwϕdx

= −
∫
D
∇w∇ϕdx−

∫
Γ
∂νw[ϕ] ds(x) + k2

∫
D
nwϕdx.

(3.16)

Using (3.16), equation (3.15) becomes∫
D
v(∆ϕ+ k2nϕ) dx−

∫
D
∇w∇ϕdx+ k2

∫
D
nwϕdx = 0 (3.17)

by replacing v with expression (3.10) and multiplying by −k2 we finally obtain

∫
D

(n− 1)−1(∆w + k2nw)(∆ϕ+ k2nϕ) dx+ k2

∫
D
∇w∇ϕdx− k4

∫
D
nwϕdx = 0. (3.18)

Now let θ ∈ H2(D) be a lifting function such that θ = f and ∂νθ = g on ∂D which moreover
fulfills the two following conditions: θ = 0 in D0 such that Γ ⊂ D0 ⊂ D and
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‖θ‖H2(D) ≤ ‖f‖H 1
2 (∂D)

+ ‖g‖
H− 1

2 (∂D)
, (3.19)

then the variational formulation amounts to find w0 = w − θ ∈ V such that for all ϕ in V ,

∫
D

(n− 1)−1(∆w0 + k2nw0)(∆ϕ+ k2nϕ) dx+ k2

∫
D
∇w0∇ϕdx− k4

∫
D
nw0ϕdx

=

∫
D

(n− 1)−1(∆θ + k2nθ)(∆ϕ+ k2nϕ) dx+ k2

∫
D
∇θ∇ϕdx− k4

∫
D
nθϕdx (3.20)

Theorem 3.3.1. The existence of a unique pair of solution (u, v) to (3.7) is equivalent to the
existence of a unique solution w0 to the variational problem (3.20). Furthermore, denoting
w = w0 + θ, we have the following relations on L2(D \ Γ),

v = − 1

k2(n− 1)
(∆ + k2n)w and u = − 1

k2(n− 1)
(∆ + k2)w. (3.21)

Proof. According to the previous discussion, we only need to prove that the existence of a unique
solution w0 to the variational formulation (3.20) implies the existence of a unique pair of solution
(u, v) given by (3.21) to (3.7). Let w0 ∈ V be a solution of (3.20), then w := w0 + θ satisfies
(3.18) for all ϕ ∈ V , by introducing the function

v :=
−1

k2(n− 1)
(∆w + k2nw) ∈ L2(D \ Γ), (3.22)

it can be written

− k2

∫
D
v(∆ϕ+ k2ϕ) dx+ k2

∫
D

∆wϕdx+ k2

∫
D
∇w∇ϕdx = 0. (3.23)

Choosing ϕ ∈ C∞c (D \ Γ) we obtain after integrating by parts that v satisfies the following
equation (in the classical sense since v ∈ L2(D \ Γ))

∆v + k2v = 0 in D \ Γ. (3.24)

We now show that v satisfies Helmholtz equation in D, let D0 ⊂ D such that Γ ⊂ D0 and that
k2 is not a Dirichlet eigenvalue for −∆ in D0. Then for all ϕ ∈ H2

0 (D) which moreover satisfies
∆ϕ+ k2ϕ = 0 on D0 is obtained from (3.23)-(3.24) that

〈v, ∂νϕ〉
H

1
2 (∂D0),H− 1

2 (∂D0)
− 〈∂νv, ϕ〉

H− 1
2 (∂D0),H

1
2 (∂D0)

= 0. (3.25)

Consequently there exists a unique ṽ ∈ H1(D0) such that ∆ṽ + k2ṽ = 0 in D0 and (ṽ, ∂ν ṽ) =
(v, ∂νv) on D0. Indeed let ṽ ∈ H1(D0) be the unique solution of

∆ṽ + k2ṽ = 0 in D0

ṽ = v on ∂D0
(3.26)

we obtain with Green formula

〈ṽ, ∂νϕ〉
H

1
2 (∂D0),H− 1

2 (∂D0)
− 〈∂ν ṽ, ϕ〉

H− 1
2 (∂D0),H

1
2 (∂D0)

= 0. (3.27)

then

〈∂νv − ∂ν ṽ, ϕ〉
H− 1

2 (∂D0),H
1
2 (∂D0)

= 0. (3.28)
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Consequently ∂νv = ∂ν ṽ. The unique continuation principle imples that v = ṽ in D0 hence v
satisfies

∆v + k2v = 0 in D. (3.29)

The function u := w+v ∈ L2(D) is easily seen to be satisfying equation ∆u+k2nu = 0 in D \Γ.
We finish the proof showing that it satisfies Neumann condition on Γ. Let ϕ ∈ V , integrating
(3.23) by parts and using the conditions [∂νϕ]Γ = 0 and ϕ|D = ∂νϕ|D = 0 we obtain the following
equation,

− k2

∫
Γ
∂+
ν vϕ

+ ds(x) + k2

∫
Γ
∂−ν vϕ

− ds(x)− k2

∫
Γ
∂νw[ϕ] ds(x) = 0 (3.30)

Interior regularity implies that ∂+
ν v = ∂−ν v, (3.30) then becomes,

∀ϕ ∈ V,
∫

Γ
(∂νw + ∂νv)[ϕ] ds(x) = 0.

The jump [ϕ]|Γ can be chosen arbitrarly, we conclude that ∂νw + ∂νv = ∂νu = 0 on Γ.

3.3.2 The Fredholm property

We now show that the interior transmission problem satisfies the Fredholm property, that is
uniqueness of solutions for any (f, g) implies existence of solution for any (f, g). By linearity of
the problem (3.7), if (u, v) and (u′, v′) are solutions then (u− u′, v − v′) is a solution with zero
right hand side (i.e f = g = 0), hence with the following definition it is equivalent to say that
the problem is injective or that k is not a transmission eigenvalue.

Definition 3.3.2. Values of k > 0 for which equation (3.7) with f = g = 0 has a non trivial
solution are called transmission eigenvalues.

Theorem 3.3.3. Assume that there exists ρ ∈] − π
2 ,

π
2 [ such that <e( eiρ

n−1) > α > 0 and that

k > 0 is not a transmission eigenvalue. Then for any f ∈ H
1
2 (∂D), g ∈ H−

1
2 (∂D), the interior

transmission problem (3.7) has a unique solution (u, v) ∈ L2(D)× L2(D) and

‖u‖L2(D) + ‖v‖L2(D) ≤ C
(
‖f‖

H
1
2 (∂D)

+ ‖g‖
H− 1

2 (∂D)

)
. (3.31)

Proof. The function

F : ϕ 7→
∫
D

(n− 1)−1(∆θ + k2nθ)(∆ϕ+ k2nϕ) dx+ k2

∫
D
∇θ∇ϕdx− k4

∫
D
nθϕdx (3.32)

is an antilinear continuous functional on V . According to the Riesz representation theorem,
there exists a unique l ∈ V such that F (ϕ) = 〈l, ϕ〉V for all ϕ ∈ V and

‖l‖V = ‖F‖ ≤ C‖θ‖H2(D). (3.33)

Samely are defined the two following operators on V ,

〈Akw,ϕ〉V =

∫
D

1

n− 1
∆w∆ϕdx+ k2

∫
D
∇w∇ϕdx (3.34)

and
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〈Bkw,ϕ〉V = k2

∫
D

n

n− 1
(∆wϕ+ w∆ϕ) dx+ k4

∫
D

n

n− 1
wϕdx. (3.35)

With these notations, a solution w0 ∈ Vk to (3.20) is equivalently a solution to equation

Akw0 + Bkw0 = l. (3.36)

It can be shown with the classical proof of Poincaré that

∀ϕ ∈ V,
∫
D
‖ϕ‖2 dx ≤ CP

∫
D
‖∇ϕ‖2 dx (3.37)

where

CP := sup
w∈V \{0}

‖w‖2L2(D)

‖∇w‖2L2(D)

< +∞ (3.38)

then the assumption on n implies that for all ϕ ∈ V , |〈Akϕ,ϕ〉V | > c‖ϕ‖2V and it can be shown
by adapting the proof of Lax Milgram theorem that Ak is an isomorphism on V . The operator
Bk is compact, the proof of this is classic, consider the part B1

k of the operator Bk given by the
first integral in (3.35), then

∀ϕ ∈ V, ‖B1
kϕ‖

2
V = k2

∫
D

n

n− 1
∆(B1

kϕ)ϕdx ≤ C‖ϕ‖L2(D)‖B
1
kϕ‖V (3.39)

Consequently

∀ϕ ∈ V, ‖B1
kϕ‖V ≤ C‖ϕ‖L2(D) (3.40)

The compact embedding of H1(D) in L2(D) then implies that B1
k is compact. We proceed the

same way to show that the other terms of Bk are compact. To conclude we use the Fredholm
alternative, the hypothesis on k implies that the operator (Ak+Bk) is injective consequently there
exists a unique solution w0 ∈ V to equation (3.36) and ‖w0‖V ≤ C‖l‖V . Theorem (3.3.1) implies
that there exists a unique solution to (3.7) given by (u, v) defined by (3.21) where w := w0 + θ.
Since u and v can be written with w,∆w, both of their L2 norm on D are controlled by ‖w‖V .
Finally we deduce with (3.33) and (3.19) the desired estimation (3.31).

We conclude this section by showing that in the case of dissipative medium, the set of real
transmission eigenvalues is empty.

Theorem 3.3.4. If =m(n) > 0 on a subset Ω ⊂ D of non empty interior, then there are no real
transmission eigenvalues.

Proof. Let k2 ∈ R and w be a solution to (3.20) with θ = 0, then regrouping the terms it is
obtained that

∫
D

(n− 1)−1(∆w + k2w)(∆w + k2w) dx− k4

∫
D
|w|2 dx

+ 2k2

∫
D
<e(w(∆w + k2nw)) dx+ k2

∫
D
|∇w|2 dx = 0. (3.41)

Taking the imaginary part gives
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∫
D
=m(n− 1)−1|∆w + k2w|2 dx = 0.

Since =m( 1
n−1) = −=m(n) < 0 on Ω (and −=m(n) ≤ 0 on D), we infer that

∆w + k2w = 0 on Ω,

consequently, from identity (3.21), u = 0 on Ω and the unique continuation principle implies
that u = 0 in D. Finally equation (3.10) implies that w = 0 in D \ Γ and u = v + w = 0 in
D \ Γ.

3.4 Transmission eigenvalues

We now consider the properties of transmission eigenvalues, as they do not exist when the
refractive index has an imaginary part according to Theorem 3.3.4, it will be assumed that n
is real valued. Furthermore, the approach we adopt requires that ITP satisfies the Fredholm
property, that is Ak is coercive and Bk is compact. According to Theorem 3.3.3 the latter will
require that the lower bound of the real refractive index is bigger that 1. Therefore from now
on we do the following assumption

Assumption 3.4.1. The refractive index n ∈ L∞(D) is assumed to be a real valued function.
With the following notations,

n∗ := inf
x∈D

n(x) and n∗ := sup
x∈D

n(x)

it is moreover assumed that n∗ > 1.

3.4.1 Faber-Krahn inequalities for transmission eigenvalues

The following theorem enunciate that there are no real transmission eigenvalue near zero.

Lemma 3.4.2. Any transmission eigenvalue k > 0 satisfies the following estimation

k ≥ 1√
n∗CP

(3.42)

where CP is the Poincaré constant defined at (3.38).

Proof. We show that the interior transmission problem is uniquely solvable for all k under the
bound given at (3.42). According to the previous section it is equivalent to show that the only
solution to (Ak + Bk)w = 0 is zero for these values of k. Using Poincaré inequality and the
assumptions on n we obtain that

〈(Ak + Bk)w,w〉V =

∫
D

(n− 1)−1|∆w + k2nw|2 dx+ k2

∫
D
|∇w|2 dx− k4

∫
D
n|w|2 dx

≥ k2‖∇w‖2L2(D) − k
4n∗‖w‖2L2(D)

≥ (k2 − k4n∗C2
p)‖∇w‖2L2(D)

obviously 0 ≤ k < 1√
n∗Cp

implies that w = 0, consequently every transmission eigenvalue satisfies

the estimate of the theorem.
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For later use we will need the following sharper result which establish the coercivity of Ak+Bk
as soon as k is small enough.

Lemma 3.4.3. Assume that n satisfies Assumption 3.4.1, then

〈(Ak + Bk)w,w〉V ≥ C‖w‖2V for all k <
n∗ − 1

CPn∗
√
n∗ − 1

(3.43)

where CP is the Poincaré constant defined at (3.38).

Proof. From the definitions of Ak and Bk (3.34)-(3.35), it is obtained that for all w ∈ V ,

〈(Ak + Bk)w,w〉V ≥
1

n∗ − 1
‖∆w‖2L2(D) + k2‖∇w‖2L2(D) − 2k2 n∗

n∗ − 1
‖∆w‖L2(D)‖w‖L2(D)

≥ 1

n∗ − 1
‖∆w‖2L2(D) + k2‖∇w‖2L2(D) − 2k2 CPn∗

n∗ − 1
‖∆w‖L2(D)‖∇w‖L2(D)

We need to choose k such that k2

n∗−1 >
(
k2CPn∗

n∗−1

)2
, which leads to the desired result.

3.4.2 Discreteness of transmission eigenvalues

In this section, we show that the set of transmission eigenvalues is at most discrete. The proof
relies on the analytic Fredholm theory, which concerns operator valued analytic functions defined
by

Definition 3.4.4. Let Ω be a domain in C and let f : Ω → X be a function from Ω into the
(complex) Banach space X. f is said to be analytic in Ω if for every z0 ∈ Ω there exists a power
series expansion

f(z) =

∞∑
m=0

am(z − z0)m (3.44)

that converges in the norm on X uniformly for all z in a neighborhood of z0 and where the
cofficients am are elements from X.

When X is more particularly L(E) for some Banach space E, we have the following result,

Theorem 3.4.5. Let Ω be a domain in C and let (Tz)z∈Ω ⊂ L(E) be a family of compact
operators such that z 7→ Tz is analytic in Ω. Then either

a) (I − Tz) is not injective for any z ∈ Ω or

b) (I − Tz) is injective for all z ∈ Ω \ S where S is a discrete subset of Ω.

Theorem 3.4.6. Assume that n ∈ L∞(D) such that =m(n) ≥ 0 and <e(n) > α + 1, then the
set of transmission eigenvalues is at most discrete (possibly empty).

Proof. We recall that k is a transmission eigenvalue if and only if (Ak +Bk) is not injective. We
reduce ourselves to the case of the theorem and uses the same notations. Choosing correctly Ω
so that for all k ∈ Ω the operator A−1

k exists (i), we can reformulate by defining the operator
Tk := A−1

k Bk that k is a transmission eigenvalue if and only if (I + Tk) is not injective. The
operator Tk is compact as well as Bk and k 7→ Tk is analytic in Ω. (Tk)k∈Ω then satisfies
the conditions of Theorem 3.4.5. Moreover taking care to include in Ω right elements which
discriminates the first point of the theorem (ii), we deduce that (I + Tk) is injective except for
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k ∈ S, a discrete subset of Ω. Then the set of real transmission eigenvalues simply given by
S ∩ R+ is discrete. A suitable set for Ω which both satisfies (i), (ii) and moreover contains the
positive real axis is

Ω =
{
k ∈ C such that <e(k) > 0 and <e(k2) > 0

}
. (3.45)

Indeed Ak defined by (3.34) is coercive for all k ∈ Ω and Lemma 3.4.2 ensures that (I + Tk) is
injective for real positive k sufficiently small.

3.4.3 Existence of transmission eigenvalues

We now turn our attention on the existence of transmission eigenvalues, it is shown in this
section that they form an infinite set with no accumulation point in R+. From the equivalence
between the weak and the strong formulation of the interior transmission problem it is sufficient
to show that k is a transmission eigenvalue if the nullspace of Ak +Bk is not trivial. Since Ak is

positive definite and self-adjoint, we can define [110] the operator A
− 1

2
k which is also bounded,

positive definite and self-adjoint. Then defining the following self-adjoint compact operator on
V,

Uk := A−
1
2

k BkA
− 1

2
k , (3.46)

it is easily seen from the factorization Ak + Bk = A
1
2
k (I + Uk)A

1
2
k that k is a transmission

eigenvalue if and only if (I+Uk) is not injective. The Hilbert-Schmidt theorem [110] implies the
existence of a sequence of eigenvalues of Uk denoted (µj(k))j≥0 accumulating to 0 and ordered
in the decreasing order for positive the eigenvalues and increasing order for negative eigenvalues.
Finally we have that k is a transmission eigenvalue if and only if there exists j ∈ N such that
1 + µj(k) = 0. We use this last characterization of transmission eigenvalues to prove their
existence and we rely on the following lemma which was first proved in [104].

Lemma 3.4.7. Let H be an Hilbert space and (Uk)k∈R ⊂ L(H) a family of self-adjoint compact
operator such that k 7→ Uk is continuous. Assume that

1) there is a k0 such that I + Uk0 is positive on H and

2) there is a k1 > k0 such that I + Uk1 is non positive on a p-dimensional subspace W of H

Then the equation 1 + µj(k) = 0 has p solutions in [k0, k1] counting their multiplicity.

Proof. The Courant-Fischer min-max [92] principle gives the following characterization of the
spectrum of Uk,

µj(k) = min
W∈Hj

max
u∈Hj\{0}

〈Uku, u〉H
‖u‖H

(3.47)

where Hj denotes the set of j-dimensional subspaces W of H. From this and the continuity
of Uk with respect to k follows the continuity of k 7→ µj(k) for all j ∈ N. The conclusion of
the lemma is then a simple consequence of the intermediate value theorem since the first point
means that µj(k0) > 1 for all j ∈ N whereas the second point guaranties that µj(k1) < 1 for
j ∈ A, a p-element subset of N.

Theorem 3.4.8. Assume that the index n satisfies Assumption 3.4.1, then the set of transmis-
sion eigenvalues is infinite with no accumulation point in R+. Furthermore the multiplicity of
each transmission eigenvalue is finite.
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Proof. We use the previous lemma to show that 1 + µj(k) = 0 has infinitely many solutions
k ∈ R where µj(k) are the eigenvalues of Uk defined by (3.46). Observing that

〈(I + Uk)w,w〉V = 〈(Ak + Bk)A
− 1

2
k w,A−

1
2

k w〉V for all w ∈ V, (3.48)

it is equivalent to deal with the operator Ak + Bk. The first assumption of the lemma is valid
because of Lemma 3.4.3. We now prove the second assumption of Lemma 3.4.7 to be valid. Let
ε > 0 be small enough such thatD\Γ containsm(ε) ≥ 1 pairwise disjoint balls B1

ε , . . . B
m
ε b D\Γ.

We set each ball refractive index to be n := n∗. We can show by a scaling argument that the
interior transmission problem on each ball has in common the same transmission eigenvalue
kε = k1

ε , where k1 is the first transmission eigenvalue for the unit ball with refractive index n∗.

Then we denote by ujε ∈ H2
0 (Bj

ε ) the associated eigenfunction of the problem on each ball, and
by ũj the extension by zero of each uj to the whole of D \Γ. Each ũjε is in the variational space
V , and furthermore form an orthogonal family since they are of disjoint compact support. Note
that for all j, ũj satisfies∫

Bjε

1

(n− 1)
|∆ũj + k2

ε ũ
j |2 dx− k2

ε

∫
Bjε

|∇ũj |2 dx+ k4
ε

∫
Bjε

|ũj |2 dx = 0. (3.49)

Now we show that Ak + Bk is non positive on the m(ε)-dimensional space span(ũ1 . . . ũm)

〈(Akε + Bkε)w,w〉V =

∫
D

1

(n− 1)
|∆ũj + k2

εnũ
j |2 dx+ k2

ε

∫
D
|∇ũj |2 dx− k4

ε

∫
D
n|ũj |2 dx

=

∫
D

1

(n− 1)
|∆ũj + k2

ε ũ
j |2 dx+ k2

ε

∫
D
|∇ũj |2 dx+ k4

ε

∫
D
|ũj |2 dx

+ k2

∫
D\Γ

(∆ũj ũj + ũj∆ũj) dx

=

∫
Bjε

1

(n− 1)
|∆ũj + k2

ε ũ
j |2 dx+ k2

ε

∫
Bjε

|∇ũj |2 dx+ k4
ε

∫
Bjε

|ũj |2 dx

+ k2

∫
Bjε

(∆ũj ũj + ũj∆ũj) dx

=

∫
Bjε

1

(n− 1)
|∆ũj + k2

ε ũ
j |2 dx− k2

ε

∫
Bjε

|∇ũj |2 dx+ k4
ε

∫
Bjε

|ũj |2 dx

≤
∫
Bjε

1

(n∗ − 1)
|∆ũj + k2

ε ũ
j |2 dx− k2

ε

∫
Bjε

|∇ũj |2 dx+ k4
ε

∫
Bjε

|ũj |2 dx

= 0.

From Lemma 3.4.7, we conclude that there arem(ε) transmission eigenvalues contained in [k0, kε].
m(ε) and kε both go to infinity as ε → ∞. Since each non zero eigenvalue of of the compact
operator Uk is isolated and of finite multiplicity hence we have shown by letting ε → 0, that
there exists an infinite countable set of transmission eigenvalues of finite multiplicity and with
no accumulation point in R+.
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Chapter 4

Detection of sound-hard obstacles in
inhomogeneous media
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4.1 Introduction

The primary issue in inverse scattering theory consists in recovering the shape of an unknown
medium from collected measurements of scattered fields generated with given incident waves.
The Factorization Method (FM) introduced by Kirsch, which is one method among the class
of the sampling methods, has shown good results in solving this problem. It first proved its
effectiveness for impenetrable obstacles [79], then to inhomogeneous media [80, 81]. Since then,
FM has been extended to numerous academical inverse problems [83]. More recently, many works
contributed to justify FM to more complex backgrounds, allowing one to implement it in practical
applications such as geophysics or nondestructive testing. We mention for instance the papers
[86, 15, 122] where scatterers made of both impenetrable obstacles and inhomogeneous medium
are considered. These works raises new questions concerning the possibility to distinguish the
impenetrable obstacle from the inhomogeneous medium. Several variants of this problem can be
considered. Firstly, one can consider the feasibility of determining an obstacle inside a known
inhomogeneous medium. This issue is treated in [101]. A second and more challenging problem
is to do so with no a priori knowledge on the inhomogeneity. At last one can understand the
obstacle as a defect which appeared in the inhomogeneity and consider the problem of detecting
the position of the defect from measurements on both the healthy material and the damaged
material. In this work, we treat this last issue by adapting the results of the Differential Linear

63
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Sampling Method (DLSM) [9] which has originally been set up to identify a modification in the
refractive index in an inhomogeneity.

More precisely, we consider the problem of identifying sound-hard defects of non empty in-
terior inside an unknown inhomogeneous medium from far field data at fixed frequency. As
mentioned, we adapt for this purpose the results of the DLSM which requires two set of mea-
surements done before and after the occurrence of the defect. The theoretical justification of the
DLSM relies on the comparison of the solutions of two Interior Transmission Problem, the one
corresponding to the healthy material and the one corresponding to the damaged material. The
use of the DLSM in practice also requires to compute these solutions from the data. The latter
can be done by the use of the Generalized Linear Sampling Method (GLSM) [10], which consists
in approximating solutions of the far field equation with a particular penalty term. On the one
hand, the GLSM requires a factorization of the far field operator, similar to the one used for the
Linear Sampling Method. On the other hand, it requires the penalty term to be equivalent to
the Herglotz operator and to satisfy a convexity property. Therefore we have chosen to use the
F] operator in the penalty term which is shown to satisfy the factorization similar to the one
required for the so called F] Method. Furthermore it should be noted that since F] is positive
definite, the optimization of the cost functional is greatly simplified and do not require any
iterative method. As a product of our analysis, we have also extended the factorization method
to this setting which yields a reconstruction procedure for the whole background. The same
remark stands for the use of GLSM.

The outline of this chapter is quite similar to Chapter 2 in which we have been considering
sound-hard defects of empty interior referred as cracks. Consequently, and for the sake of
making this chapter self contained, there are some repetitions for notations and settings in the
introductory section and the numerical part. However, the study of these two problems differs
in some technical aspects. For instance, in this chapter the regularity of the boundary of the
non penetrable obstacle Ω is weaker than the one required for the cracks; but as a counterpart,
the wave number is assumed not to be a Neumann eigenvalue for the Laplace operator in Ω. We
also mention that this work has brought new difficulties such as the study of the corresponding
interior transmission eigenvalue problem which is treated in a next chapter and for which the
issue concerning the existence of transmission eigenvalue is not solved yet.

4.2 The forward scattering problem

We consider an isotropic inhomogeneous medium D embedded in Rd with d = 2 or 3, containing
sound-hard obstacle Ω ⊂ D. Both of the sets D and Ω are assumed to be domains of non empty
interior, of Lipschitz boundary and of connected complement. The normal vector ν on ∂D and
∂Ω are respectively defined as the outward normal vector to D and Ω. In this setting, the total
field u ∈ H1

loc(Rd \ Ω) satisfies

∆u+ k2nu = 0 in Rd \ Ω

∂νu = 0 on ∂Ω
(4.1)

where k > 0 is the wave number and n ∈ L∞(Rd \ Ω) the refractive index of the medium. We
assume that supp(n − 1) = D \ Ω and =m(n) ≥ 0 in Rd \ Ω. Given an incident field ui, the
scattered field us := u− ui then satisfies

∆us + k2nus = −k2(n− 1)ui in Rd \ Ω

∂νus = −∂νui on ∂Ω.
(4.2)
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Moreover us is assumed to satisfy the Sommerfeld radiation condition,

lim
r→+∞

r
d−1
2

(
∂us
∂r
− ikus

)
= 0 (4.3)

uniformly with respect to x/r with r = |x|. As a consequence, us has the following expansion

us(x) = eik|x||x|−
d−1
2

(
u∞s (x̂) +O(1/|x|)

)
, (4.4)

as |x| → +∞, uniformly in x̂ = x/|x| ∈ Sd−1, which denotes the unit sphere of Rd. The function
u∞s : Sd−1 → C, is called the far field pattern associated with ui. We are interested in far
field patterns associated with a particular class of incident waves called Herglotz wave functions
defined for g ∈ L2(Sd−1) by

vg :=

∫
Sd−1

g(θ)eikθ·x ds(θ). (4.5)

We denote by u∞s (θ, x̂) the far field pattern associated to ui(θ, ·) := eikθ·x for θ ∈ Sd−1 (incident
plane wave of direction θ). Thanks to the linearity of the scattering problem (1.1)-(1.2), the far
field pattern associated to the Herglotz wave vg is given by

(Fg)(x̂) =

∫
Sd−1

g(θ)u∞s (θ, x̂) ds(θ). (4.6)

This defines the so-called far field operator F : L2(Sd−1) → L2(Sd−1) which constitutes the
data of the inverse scattering problem where one is interested in recovering qualitative or even
quantitative information on the refractive index n and on Ω. In the next section is shown that
the far field operator satisfies the needed properties allowing to apply the GLSM and the DLSM
to this setting.

4.3 The far field operator

In this section we provide the two complementary factorizations of the far field operator which
are required for the implementation of GLSM and DLSM. The first operator H involved in the
factorization slightly differs from the classical Herglotz operator which appears in the study of
more classical problem such as isotropic inhomogeneities. Indeed taking into account the con-
tribution of the sound-hard obstacle into the far field while establishing the second factorization
requires a second well chosen component in the definition of H. We also show all the results
allowing to justify the use of the F] method.

4.3.1 Factorization of the far field operator

For the reason that the scattered field us, determined by (4.2)-(4.3), only depends of the source
term (v|D\Ω, ∂νv|Ω) we define the following Herglotz operator by

H : L2(Sd−1) −→ L2(D \ Ω)× L2(∂Ω)
g 7−→ (vg |D\Ω, ∂νvg |∂Ω)

(4.7)

where vg is defined by (4.5). As it will be clearer below, the second component in the definition
of H is necessary to obtain the factorization (4.26).
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Remark 4.3.1. Another legitimate option would be to define

H1 : L2(Sd−1) −→ L2(D)× L2(∂Ω)
g 7−→ (vg |D, ∂νvg |∂Ω)

(4.8)

but there is no major difference between these two choices. Indeed the important point of our
study relies on the space R(H) which is exactly, as we will see, restrictions of functions in the
space R(H1). We recall that the closure of Herglotz functions restricted to D for the L2(D) norm
is [29, Lemma 2.1]

H = {v ∈ L2(D) |∆v + k2v = 0 in D}. (4.9)

It is well known that not all functions in H can be expanded to solution of Helmholtz equation
on a set larger than D due to a lack of regularity of the traces on ∂D. However the situation is
a bit different when we consider the closure of Herglotz functions restricted to an annulus such
as D \ Ω. It will be shown in Proposition 4.3.3, that functions in the closure of Herglotz waves
for the L2(D \Ω) norm have a specific trace reguarity on ∂Ω, more precisely they are restriction
to D \ Ω of functions in H .

Lemma 4.3.2. Let Ω̃ ⊂ D be an open domain. There exists a constant C0 > 0 depending only
on D and Ω̃ such that for all v satisfying the Helmholtz equation on D,

‖v‖
H2(Ω̃)

≤ C0‖v‖L2(D\Ω̃)
. (4.10)

Proof. In this proof C refers to a non negative real number independant of v and whose value
can differ from one line to another. We consider two domains of regular boundaries A, B such
that Ω̃ b A b B b D. From the first set inclusion we have that for all v ∈H ,

‖v‖
H2(Ω̃)

≤ ‖v‖H2(A). (4.11)

Then from the well posedness of the following boundary problem of finding ϕ ∈ H2(A) such that

∆ϕ+ k2ϕ = 0 in A
∂ϕ
∂ν + iϕ = f on ∂A

for f ∈ H
1
2 (∂A), we infer the existence of a constant C > 0 depending only on A such that

‖v‖H2(A) ≤ C‖∂νv + iv‖
H

1
2 (∂A)

. (4.12)

From the trace regularity and the interior regularity theorem we deduce that

‖∂νv + iv‖
H

1
2 (∂A)

≤ C‖v‖H2(A\B) ≤ C‖v‖L2(D\Ω̃)
. (4.13)

We finally combine (4.11), (4.12) and (4.13) to obtain the desired result.

Proposition 4.3.3. We have the following characterization for the closure of the range of H,

R(H) = {(v|D\Ω, ∂νv|∂Ω) such that v ∈H }.

Proof. Let v ∈ R(H) and (vn)n∈N a sequence of Herglotz functions converging to v in L2(D \Ω).
Let X ⊂ D such that Ω b X. From Lemma (4.3.2) we have that ∀m,n ∈ N,

‖vn − vm‖H2(X) ≤ C0‖vn − vm‖L2(D\Ω). (4.14)
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Consequently (vn)n∈N is a Cauchy sequence in H2(X) and converges to some ṽ ∈ H2(X) which
moreover satisfies Helmholtz equation in X. Note that v = ṽ on X \ Ω. We conclude that v
extended by ṽ in Ω is an element of H .

We now define the operator G : R(H)→ L2(Sd−1) by

G(v, ∂νv) := u∞s , (4.15)

where u∞s is the far field pattern of the solution us of equations (4.2)-(4.3) with ui = v. The
following first factorization of the far field operator is then obvious:

F = GH. (4.16)

We now establish the second factorization of F . For x ∈ Rd, we denote by Φ(x, ·) the outgoing
solution of

∆Φ(x, ·) + k2Φ(x, ·) = −δx. (4.17)

Φ is given by the following formulas,

Φ(x, y) =
i

4
H0(k|x− y|) if d = 2 and Φ(x, y) =

1

4π

eik|x−y|

|x− y|
if d = 3. (4.18)

Let u ∈ H1
loc(Rd \ Ω) be the solution of (4.1)-(4.3) for a given incident wave in R(H). Let

x ∈ Rd \ Ω and B a ball containing x and D. Then Green’s second formula implies that

u(x) = k2

∫
B\Ω

(n− 1)u(y)Φ(x, y) dy −
∫
∂B
u(y)∂νΦ(x, y) ds(y)

+

∫
∂B
∂νu(y)Φ(x, y) ds(y) +

∫
∂Ω
u(y)∂νΦ(x, y) ds(y)

and

ui(x) = −
∫
∂B
ui(y)∂νΦ(x, y) ds(y) +

∫
∂B
∂νui(y)Φ(x, y) ds(y). (4.19)

Furthermore Green’s second formula and the Sommerfeld radiation condition implies that (x ∈
B) ∫

∂B
us(y)∂νΦ(x, y) ds(y)−

∫
∂B
∂νus(y)Φ(x, y) ds(y) = 0. (4.20)

Adding these equations together gives

us(x) = k2

∫
D\Ω

(n− 1)u(y)Φ(x, y) dy +

∫
∂Ω
u(y)∂νΦ(x, y) ds(y). (4.21)

Finally using the far field pattern of the fundamental solution Φz(x) = Φ(x, z) which is given by

Φ∞z (x̂) = ηde
−ikx̂·z (4.22)

where the constant ηd is given by ηd = ei
π
4 /
√

8πk for d = 2 and by = 1/(4π) for d = 3 is obtained
the following integral representation of the far field pattern of us:
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u∞s (x̂) =

∫
D\Ω

ηdk
2(n(y)− 1)u(y)e−ikx̂y dy +

∫
∂Ω
ηdu(y)∂ν(y)e

−ikx̂y ds(y). (4.23)

We now can see the importance of the second component of H whose adjoint is hence given by

H∗(ϕ1, ϕ2)(θ) =

∫
D\Ω

ϕ1(x)e−ikxθ dx+

∫
∂Ω
ϕ2(x)e−ikxθ ds(x). (4.24)

This allows to take into account the second term of (4.23) and after defining the mapping
T : R(H)→ L2(D \ Ω)× L2(∂Ω) by

T (v, ∂νv) = (k2(n− 1)u|D\Ω, u|∂Ω), (4.25)

is obtained the following factorization of the far field operator:

F = ηdH
∗TH. (4.26)

In the next paragraph are stated the required properties of the newly defined operators.

4.3.2 Properties of the involved operators

In this paragraph we turn our attention to proving the properties of the operators H, G and
T which are required for the implementation of the inversion algorithms presented in the next
section. In a few words, the operator H will be asked to be injective and compact, G injective
with dense range, and T to satisfy a positivity property. The properties of these two last oper-
ators depends on the well posedness of a particular boundary value problem called the Interior
Transmission Problem (ITP). The latter characterizes the fact that G is injective since the so-
lutions of (ITP) corresponds to elements of the nullspace of G. We now write the corresponding
equations of (ITP). Let v ∈ Ker(G); by definition of G, the far field of the solution us of
(4.2)-(4.3) is zero. Then Rellich lemma implies that us vanishes in Rd \D. The regularity of us
then implies that us = ∂νus = 0 on ∂D. Finally by defining u := us+v, the pair (u, v) is seen to
be satisfying the equations below: find u ∈ L2(D \Ω), v ∈ L2(D) such that u− v ∈ H1(D \Ω),
∆(u− v) ∈ L2(D \ Ω) and

∆u+ k2nu = 0 in D \ Ω u− v = 0 on ∂D

∆v + k2 v = 0 in D ∂νu− ∂νv = 0 on ∂D

∂νu = 0 on ∂Ω.

(ITP)

Note that v ∈ R(H) has been extended to a solution of Helmholtz equation on D in line with
Proposition 4.3.3. This problem can be understood as an eigenvalue problem and k > 0 is said
to be a transmission eigenvalue if there exists a non trivial solution to it. With this terminology
G is injective if and only if k is not a transmission eigenvalue. It is shown in Chapter 5 that the
set of transmission eigenvalues is empty if n has an imaginary part, otherwise it is shown that it
is at most discrete with finite accumulation point. The following lemma will be usefull to show
that the range of G is dense.

Lemma 4.3.4. Let v1, v2 ∈H be two incident waves and w1, w2 ∈ H2
loc(Rd\Ω) be the associated

scattered fields determined by (4.2)-(4.3). Then we have the following identity,

k2

∫
D\Ω

(n− 1)v1w2 dx+

∫
∂Ω
∂νv1w2 ds(x) = k2

∫
D\Ω

(n− 1)v2w1 dx+

∫
∂Ω
∂νv2w1 ds(x). (4.27)
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Proof. w1 and w2 satisfies the following equations,

∆w1 + k2nw1 = −k2(n− 1)v1, ∆w2 + k2nw2 = −k2(n− 1)v2 in Rd \ Ω. (4.28)

Multiplying the first equation by w2 and the second by w1, then integrating by parts the differ-
ence over BR \ Ω, where BR is the open ball of radius R centered at O, we obtain

−k2

∫
D\Ω

(n− 1)(v1w2 − v2w1) dx =

∫
∂BR

(∂νw1w2 − w1∂νw2) ds(x) +

∫
∂Ω

(w2∂νv1 − w1∂νv2) ds(x).

(4.29)
Since w1 and w2 satisfies the Sommerfeld radiation condition, the first integral of the right hand
side goes to zero when R goes to infinity, indeed

∣∣∣∣∫
∂BR

(∂νw1w2 − w1∂νw2) ds(x)

∣∣∣∣ ≤ ∫
∂BR

|∂νw1w2−ikw1w2|ds(x)+

∫
∂BR

|ikw1w2−w1∂νw2|ds(x)

≤
∫
∂BR

|∂νw1 − ikw1|2 ds(x)

∫
∂BR

|w2|2 ds(x) +

∫
∂BR

|∂νw2 − ikw2|2 ds(x)

∫
∂BR

|w1|2 ds(x).

(4.30)

Consequently taking the limit R→ +∞ in (4.29) gives the desired identity.

Proposition 4.3.5. The operator H is injective and compact. Assume that k > 0 is not a
transmission eigenvalue. Then the operator G : R(H) → L2(Sd−1) is compact, injective with
dense range.

Proof. The proof of the injectivity of H follows a classical argument based on the Jacobi Anger
expansion (apply [29, Lemma 2.1]). The compactness of H results from the fact that H is an
integral operator with smooth kernel. The injectivity of G is a consequence of the assumption
made on k as discussed before introducing (ITP). The compactness of G is deduced from the
equality G = H∗T since H is compact and T is continuous. We now proceed with the proof
of the denseness of the range of G. Let φ, g ∈ L2(Sd−1), on the one hand we have from the
representation formula (4.23) that

〈G(Hφ), g〉L2(Sd−1) = k2

∫
D\Ω

(n− 1)(vφ + us(φ))vg dx+

∫
∂Ω

(vφ + us(φ))∂νvg ds(x) (4.31)

where us(φ) is the scattered field associated to vφ. On the second hand we have from identity
(4.27),

k2

∫
D\Ω

(n− 1)(vφ + us(φ))vg dx+

∫
∂Ω

(vφ + us(φ))∂νvg ds(x)

= k2

∫
D\Ω

(n− 1)(vg + us(g))vφ dx+

∫
∂Ω

(vg + us(g))∂νvφ ds(x) (4.32)

where us(g) is the scattered associated to vg. Therefore we obtain the following reciprocity
relation
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〈G(Hφ), g〉L2(Sd−1) = 〈G(Hg), φ〉L2(Sd−1). (4.33)

Now if g ∈ R(G)⊥, the reciprocity relation implies that G(Hg) = 0. It follows from the injectivity
of G and H that g is necessarly zero, hence G has dense range.

We now turn our attention on the properties of T .

Lemma 4.3.6. For all V = (v, ∂νv) ∈ R(H), we have the energy identity

=m(〈TV, V 〉L2(D\Ω)×L2(∂Ω)) = k2

∫
D\Ω
=m(n)|us + v|2 dx+ k‖u∞s ‖2L2(Sd−1), (4.34)

where us denotes the solution of (4.2)-(4.3) with ui = v.

Proof. Let (v, ∂νv) ∈ R(H), the corresponding us satisfies the equation

∆us + k2us = −k2(n− 1)(us + v). (4.35)

Let BR be the centered ball of radius R sufficiently large such that D ⊂ BR. Multiplying
equation (4.35) by us and integrating by parts over BR \ Ω gives

−
∫
BR\Ω

|∇us|2 − k2|us|2 dx

+

∫
∂BR

∂νusus ds(x)−
∫
∂Ω
∂νusus ds(x) = −k2

∫
D\Ω

(n− 1)(us + v)us dx

Using the definition of T (4.25) and the previous relation gives

〈TV, V 〉L2(D\Ω)×L2(∂Ω) = k2

∫
D\Ω

(n− 1)|us + v|2 dx−
∫
BR

|∇us|2 − k2|us|2 dx

+

∫
∂Ω

(v + us)∂νv ds(x)−
∫
∂Ω
∂νusus ds(x) +

∫
∂BR

∂νus us ds(x).

We now take the imaginary part of this equation, after noticing that∫
∂Ω
v∂νv ds(x) =

∫
Ω
|∇v|2 dx− k2

∫
Ω
|v|2 dx

we obtain

=m〈TV, V 〉L2(D\Ω)×L2(∂Ω) = k2

∫
D\Ω
=m(n)|us + v|2 dx

+

∫
∂Ω
=m(us∂νv − ∂νusus) ds(x) + =m

∫
∂BR

∂νusus ds(x). (4.36)

We observe that the first sum of the second line is zero because of the Neumann condition
∂νus = −∂νv on ∂Ω. Finally the radiation condition (4.3) implies

lim
R→∞

∫
∂BR

∂νusus ds(x) = ik

∫
Sd−1

|u∞s |2 dθ = ik‖GV ‖2L2(Sd−1). (4.37)

As a consequence, letting R to infinity in (4.36) gives the desired identity.
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Proposition 4.3.7. Assume that the refractive index satisfies 1 − <e(n) + α=m(n) > n0 or
<e(n) − 1 + α=m(n) > n0 almost everywhere on D \ Ω where α and n0 are positive constants.
Assume furthermore that k is not a transmission eigenvalue, then there exists a constant µ > 0
such that ∀V ∈ R(H),

|〈TV, V 〉L2(D\Ω)×L2(∂Ω)| ≥ µ‖V ‖
2
L2(D\Ω)×L2(∂Ω). (4.38)

Proof. We use a contradiction argument, assume the existence of a sequence (Vl)l∈N = (vl, ∂νvl)l∈N ⊂
R(H) satisfying

‖Vl‖L2(D\Ω)×L2(∂Ω) = 1 and 〈TVl, Vl〉L2(D\Ω)×L2(∂Ω) −→l→∞ 0. (4.39)

Since (Vl)l∈N is bounded, one can assume that it converges weakly to V = (v, ∂νv) ∈ R(H). Now
let wl ∈ H2

loc(Rd \ Ω) be the solution of the scattering problem (4.2)-(4.3) with ui = vl. Then
classical elliptic regularity implies,

‖wl‖H2(D\Ω) ≤ C‖vl‖L2(D\Ω). (4.40)

Consequently (wl)l∈N is bounded in H2
loc(Rd \ Ω) and the compact embedding theorem implies

that it converges strongly in L2(D \ Ω). Denoting w ∈ L2(Rd \ Ω) the limit, it can be shown
using distributionnal limits that w satisfies (4.4)-(4.3) with ui = v. Assumption (4.39) and
Lemma 4.3.6 then imply that GV = 0. Finally the assumption on k implies that V = 0. We
now can conclude this proof, from the definition of T and the L2 scalar product is obtained after
regrouping terms,

〈TVl, Vl〉L2(D\Ω)×L2(∂Ω) = k2

∫
D\Ω

(n− 1)|vl|2 dy

+

∫
∂Ω
vl∂νvl ds(y) + k2

∫
D\Ω

(n− 1)wlvl dy +

∫
∂Ω
wl∂νvl ds(y).

All the terms of the second line goes to zero as l goes to infinity. Indeed we obtain for the first
term after using Lemma 4.3.2 with Ω̃ = Ω∫

∂Ω
vl∂νvl ds(y) ≤ C‖vl‖2H2(Ω) ≤ C‖vl‖

2
L2(D\Ω) −→l→0

0. (4.41)

This shows the desired result for the first term, the convergence to zero of the two other terms is
obvious because of the strong convergence of wl to zero in H2(D \Ω) resulting from estimation
(4.40). To summarize, we have shown that

〈TVl, Vl〉L2(D\Ω)×L2(∂Ω) = k2

∫
D\Ω

(n− 1)|vl|2 dy + o
l→∞

(1).

The hypothesis on n and the first assertion of (4.39) implies that

lim
l→+∞

|〈TVl, Vl〉L2(D\Ω)×L2(∂Ω)| > c > 0 (4.42)

where c is a constant and this is a contradiction to the second assertion (4.39).

In order to implement the F] method we also show the following result,

Lemma 4.3.8. Assume that there exists θ ∈ [0, π] such that =m(n) ≥ 0 and <e(eiθ(n − 1)) >
α > 0 for some positive constant α. We define the operator T θ := <e(eiθT ) + i=m(T ), then T θ

satisfies
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1. =m〈T θV, V 〉 ≥ 0 for all V ∈ R(H).

2. <eT θ = T θ0 + C where C is compact on R(H) and T θ0 satisfies

〈T θ0 V, V 〉 ≥ α‖V ‖2 (4.43)

for all V ∈ R(H) and some positive constant α.

3. =m(T θ) is injective on R(H).

Proof. We recall the definition of T : R(H)→ L2(D \ Ω)× L2(∂Ω),

T (v, ∂νv) = (k2(n− 1)u|D\Ω, u|∂Ω). (4.44)

with u the solution of (4.1)-(4.3). We introduce the operator

T θ0 V = (k2<e(eiθ(n− 1))V1, V2) (4.45)

which is obviously coercive. <e(T θ − T θ0 ) is compact thanks to the compact embedding from
H1(D\Ω) to L2(D\Ω). From identity (4.34) we obtain that =m(〈T θV, V 〉) = =m(〈TV, V 〉) ≥ 0.
Finally since k is not a transmission eigenvalue we can show similarly to the previous proof that
=m(T θ) is injective on R(H).

We now have all the ingredients allowing to state the results of the sampling methods which
is the subject of the next section.

4.4 Inversion algorithms

This section is split into two paragraphs. In the first one we reconstruct the shape of the scatterer
by the use of the GLSM whose justification is straightforward from the results of the previous
section. In the second one the original proof of the DLSM is adapted to fit to our setting allowing
to detect sound hard defects from differential measurements.

4.4.1 Reconstruction of the background

All the results of the previous section allows to use the F] method to recover the shape of
the background formed by the inhomogeneous media and the sound hard obstacle. Another
possibility is to use the GLSM and use the penalty term 〈F]g, g〉 since the latter is equivalent
to ‖Hg‖ according to the abstract theorem of the F] method. We have chosen to rather present
the GLSM with the F] penalty term since it provides approximate solutions to (ITP), a key
element required for the DLSM. The main ingredient of GLSM is the following theorem whose
proof is classical and can easily be adapted to our setting (see for instance [29, Theorem 2.3]).

Theorem 4.4.1. Assume that the interior transmission problem (ITP) is well-posed. Then

z ∈ D if and only if Φ∞z ∈ R(G).

The particularity of the GLSM is to build an approximate solution of the far field equation
Fg ' Φ∞z , obtained by the least square method with a well chosen penalization term. For the
latter are defined the following operators for given θ ∈ R,

Fθ = <e(eiθF ) + i=m(F ) (4.46)
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and
F ]θ := |<e(eiθF )|+ |=m(F )| (4.47)

Obviously we have

Fθ = H?T θH (4.48)

where T θ is defined in Lemma 4.3.8. We then define the following cost functional Jα(Φ∞z , ·) :
L2(Sd−1)→ R by

Jα(Φ∞z , g) = α〈F ]θg, g〉L2(Sd−1) + ‖Fg − Φ∞z ‖2L2(Sd−1), ∀g ∈ L2(Sd−1), (4.49)

Theorem 4.4.2 (GLSM). Assume that k is not a transmission eigenvalue, that the index n
and the parameter θ are as in Lemma 4.3.8. Let gαz ∈ L2(Sd−1) be a minimizing sequence of
Jα(Φ∞z , ·) such that

Jα(Φ∞z , g
α
z ) ≤ inf

g
Jα(Φ∞z , g) + p(α), (4.50)

where lim
α→0

α−1p(α) = 0. Then

• z ∈ D if and only if lim
α→0
〈F ]θg

α
z , g

α
z 〉L2(Sd−1) < +∞.

• If z ∈ D then there exists h ∈ R(H) = {(v|D\Ω, ∂νv|∂Ω) such that v ∈ H } such that
Φ∞z = Gh and Hgαz converges strongly to h as α→ 0.

Thus the GLSM, justified by this theorem, offers a way to recover D, that is to identify the
perturbation in the reference background. Note that the GLSM, contrary to the LSM, provides
an exact characterization of D. However it does not give any information on the location of the
obstacle Ω. We also mention that in the case where D is simply connected and =m(n) is positive
definite in a region of D then one can avoid the assumption on k: indeed it is shown in chapter
5 that the set of transmission eigenvalue is empty in this case.

Proof. We establish this theorem by applying the abstract result of [29, Theorem 2.10]. The
latter requires that the following properties hold.

i) F = GH is injective with dense range and G is compact,

ii) F ]θ factorizes as F ]θ = H∗T ]θH where T ]θ satisfies the coercivity property

∃µ > 0, ∀V ∈ R(H), |〈T ]θV, V 〉L2(D\Ω)×L2(Ω)| ≥ µ‖V ‖2L2(D\Ω)×L2(Ω), (4.51)

iii) V 7→ |〈T ]θV, V 〉L2(D\Ω)×L2(Ω)|1/2 is uniformly convex on R(H).

Item i) results from the properties of G and H Propositon 4.3.5. Item ii) is a direct consequence
of [29, Theorem 2.31] which requires some assumption on T θ that are all gathered in Lemma

4.3.8. The last item iii) is deduced from ii) and from the fact that T ]θ is selfadjoint and coercive

on R(H) (see e.g. [29]).

Since F is compact, so does the operator F ]θ and the penalization term 〈F ]θg, g〉L2(Sd−1) is
then not a classical regularization term. Consequently, dealing with a noisy version F requires
a particular regularization of the cost function Jα which moreover treat the fact that the corre-
sponding F ]θ might not have the required factorization. For this aspect, we refer the reader to
[10, Section 5.2].
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D1
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D2
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Figure 4.1: We split D into two families of connected components.

4.4.2 Identification of sound hard defects in inhomogeneities

In this paragraph is provided a method allowing to locate the position of a defect Ω, corre-
sponding to a sound hard obstacle, in a penetrable material D. To implement this method, one
requires two set of far field data at fixed frequency. The first one is measured from the flawless
material and the second one from the damaged material. The theoretical foundation of this
method relies on the comparison of the solution v0 and v of the transmission problems P(D)
and PΩ(D) defined by

P(D): find u0, v0 ∈ L2(D) such that
u0 − v0 ∈ H2(D) and

∆u0 + k2nu0 = 0 in D

∆v0 + k2v0 = 0 in D

u0 − v0 = Φ∞z on ∂D

∂νu0 − ∂νv0 = ∂νΦ∞z on ∂D,

PΩ(D): find u, v ∈ L2(D) such that
u− v ∈ H1

∆(D \ Ω) and

∆u+ k2nu = 0 in D \ Ω

∆v + k2v = 0 in D

∂+
ν u = 0 on ∂Ω

u− v = Φ∞z on ∂D

∂νu− ∂νv = ∂νΦ∞z on ∂D.

We distinguish the components of D which contains the obstacle Ω with the following no-
tations: the ones containing obstacles are listed by (Dj

Ω)j ; the other components are listed by

(Dj
0)j . We finally set DΩ := ∪jDj

Ω and D0 := ∪jDj
0 so that D = DΩ ∪ D0. In figure 4.1 is

illustrated an example of setting in the two dimensional case.

Theorem 4.4.3. Assume that k2 is not a Neumann eigenvalue for −n−1∆ in Ω and is such
that both P(D) and PΩ(D) are well-posed.

i) If z ∈ D0 then v = v0 in D. ii) If z ∈ DΩ then v 6= v0 in DΩ.

Proof. i) Let z ∈ D0, since the equations for P(D) and PΩ(D) coincide on D0 and are uniquely
solvable, we deduce that v = v0 in D0. Moreover the solution to both problems P(D) and
PΩ(D) is given by the pair (0,−Φ∞z ) on DΩ. Consequently v = v0 = −Φ∞z in DΩ.
ii) Now let z ∈ DΩ, we prove the second assertion by using a contradiction argument. Assume
that v = v0 in DΩ. Define U such that U = u − u0 in DΩ \ Ω and U = 0 in Rd \ DΩ. Since
U = ∂νU = 0 on ∂DΩ, from the unique continuation principle, we obtain U = 0 in Rd \ Ω and
then ∂νu0 = ∂νu = 0 on ∂Ω. Since we assumed that k is not a Neumann eigenvalue for −n−1∆
in Ω, we deduce that u0 = 0 in Ω, and by unique continuation, u0 = 0 in DΩ. Thus we must
have v0 = −Φ∞z in DΩ which contradicts the fact that u0 − v0 ∈ H2(D).

Now we consider a first heterogeneous medium without obstacle with a perturbation of the
reference background supported in D modeled by some index n, and a second medium with the
same refractive index n but with an additional sound hard obstacle inside D. The corresponding
far field operators are denoted respectively F0 and F1. Then for j = 0, 1, let gαj,z refer to the

sequences introduced in the statement of Theorem 4.4.2 with F ]j = |12(Fj + F ∗j )|+ | 12i(Fj − F
∗
j )|
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(corresponding with θ = 0. We also set for j = 0, 1

Aαj (z) = 〈F ]j g
α
j,z, g

α
j,z〉L2(Sd−1); Dαj (z) = 〈F ]j (gα1,z − gα0,z), (gα1,z − gα0,z)〉L2(Sd−1). (4.52)

The combination of Theorem 4.4.2 and 4.4.3 leads to the following result.

Theorem 4.4.4 (DLSM). Assume that k, n are as in Theorem 4.4.3 and that n also satisfies
the assumptions of Theorem 4.4.2. Then for j = 0 or 1[

z ∈ D0

]
⇒
[

lim
α→0
Dαj (z) = 0

]
and

[
z ∈ DΩ

]
⇒
[

0 < lim
α→0
Dαj (z) < +∞

]
.

Proof. As explained in the proof of Theorem 4.4.2, F ]1 admits a factorization of the form H∗T ]1H

where T ]1 is bounded and 〈T ]1 ·, ·〉 is coercive. According to the study of obstacle-free inhomoge-

neous medium a same factorization stands for F0 involving an operator T ]0 that have the same

properties of T ]1 . This implies (for j = 0 or 1) the existence of two positive constants κ and K
such that

κ‖H(gα1,z − gα0,z)‖2L2(D) ≤ D
α
j (z) ≤ K‖H(gα1,z − gα0,z)‖2L2(D). (4.53)

Now for z ∈ D, if we denote (u0, v0) (resp. (u1, v1)) the solution of P(D) (resp. PΩ(D)), then
Theorem 4.4.2 and the GLSM for the obstacle-free inhomogeneous medium (see the justification
in [29]) guarantee that lim

α→0
‖H(gα1,z−gα0,z)‖ = ‖H(v−v0)‖. Then the result follows from Theorem

4.4.3.

From Theorems 4.4.2 and 4.4.4, one can design indicators for D and DΩ.

IGLSM(z) = lim
α→0

1

Aα1 (z)
and IDLSM(z) = lim

α→0

1

Aα0 (z)
(

1 +
Aα0 (z)
Dα(z)

) . (4.54)

For these indicators, one can show the following result which allows one to identify the connected
components of D in which some obstacles have appeared.

Corollary 4.4.5. Under the assumptions of Theorem 4.4.4, we have

• IGLSM(z) = 0 in Rd \D and IGLSM(z) > 0 in D.

• IDLSM(z) = 0 in Rd \DΩ and IDLSM(z) > 0 in DΩ.

4.5 Numerical results

To conclude this chapter, we apply the GLSM and the DLSM on synthetic data computed
from numerical approximations of the scattering problems. All simulated backgrounds have in
the examples below the same shape D constituted of three disjoint disks of radi 0.75 and of
refractive index n = 1.5. They differ from one to another in the distribution of obstacles inside
the disks. For each background we generate a discretization of the far field operator F by solving
numerically the direct problem for multiple incident fields ui(θp) with wave number k = 4π.
Then we compute the matrix F = (u∞s (θp, x̂q))p,q for θp, x̂q in {cos( 2lπ

100), sin( 2lπ
100), l = 1..100}

(somehow we discretize L2(S1)). Finally, we add random noise to the simulated F and obtain
our final synthetic far field data F δ with F δpq = Fpq(1 + σN). Here N is a complex random
variable whose real and imaginary parts are uniformly chosen in [−1, 1]2. The parameter σ > 0
is chosen so that ‖F δ − F‖ = 0.05‖F δ‖.
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To handle the noise δ added on the far field data, we use a regularized version of the GLSM
consisting in finding the minimizers gα,δz of the functional

g 7→ Jα,δ(Φ∞z , g) = α(|〈F ]δg, g〉L2(Sd−1)|+ δ‖F δ‖‖g‖2L2(S2)) + ‖F δg − Φ∞z ‖2L2(Sd−1),

where F ]δ := |12(F δ + F δ∗)| + | 12i(F
δ − F δ∗)|. We fit α to δ according to [10, Section 5.2]. The

new relevant indicator function for the regularized GLSM is then given by

Iα,δGLSM(z) =
1

Aα,δ(z)

where Aα,δ(z) = 〈F ]δgα,δz , gα,δz 〉L2(Sd−1) + δ‖F δ‖‖gα,δz ‖2L2(Sd−1)
.

Fig. 4.2 shows the results of GLSM indicator function z 7→ Iα,δGLSM(z) for two different con-
figurations where the second one is obtained from the first one by adding a defect to the third
component. The two other components contain the same defect. One observes that GLSM is
capable of retrieving the domain D for each configuration. We also observe how the behavior of
the indicator function is different inside the third component. This is somehow what the DLSM
exploits to isolate the component where a defect appears and this is what is discussed next.

Figure 4.2: Simulated backgrounds on the left and associated GLSM indicator function z 7→ Iα,δGLSM(z)
on the right.

Given two far field data F δ0 and F δ1 , we respectively define F ]δ0 , g
α,δ
0,z , A

α,δ
0 (z) and F ]δ1 , g

α,δ
1,z , A

α,δ
1 (z)

associated to each data as described in the previous paragraph. We also define

Dα,δ(z) = 〈F ]0(gα,δ1,z − g
α,δ
0,z ), (gα,δ1,z − g

α,δ
0,z )〉L2(Sd−1).

Then, according to (4.54), the DLSM indicator is given by

Iα,δDLSM(z) =
1

Aα,δ0 (z)
(

1 +
Aα,δ0 (z)

Dα,δ(z)

) .
The behavior of the DLSM indicator function is illustrated below for several scenarios. In each
figure is presented from left to right, the initial background (associated with F δ0 ), the damaged

background (associated with F δ1 ) and the DLSM indicator function z 7→ Iα,δDLSM(z). As expected,
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the latter allows us to identify for all scenarios the component(s) DΩ where (additional) defects
appeared. We also remark that it slightly accentuates the border of D0. But this effect is not
explained by our theory and it does not contradict it: Our theoretical result does not stipulate
that the indicator function is ”uniformly” close to 0 outside DΩ.

Figure 4.3: A scenario for DLSM simulating the emergence of a defect in one component of a healthy
background.

Figure 4.4: A scenario for DLSM simulating the emergence of a defect in two components of a healthy
background.

Figure 4.5: A scenario for DLSM simulating the emergence of two defects in one component of a healthy
background.
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Figure 4.6: Two scenarios for DLSM simulating the emergence of a defect in one component of an
already damaged material.



Chapter 5

The interior transmission problem
for inhomogeneities with sound hard
inclusions
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5.1 Introduction

In this chapter is studied the interior transmission problem for isotropic inhomogeneities con-
taining sound hard obstacles. This chapter differs from chapter 3 in that the obstacles considered
are now of non empty interior. We investigate the classical issues related to the study of interior
transmission problems that are the Fredholm property, the discreteness of the set of transmission
eigenvalues and the existence of positive transmission eigenvalues. The first approach we con-
sider relies a fourth order formulation of the interior transmission problem. This approach has
been introduced in [113] for the study of isotropic inhomogeneities and has been successfully used
in many other works [33, 34, 104, 32]. However we have encountered several difficulties with this
approach. Finding the right weak formulation has not been easy and we have been compelled to
set a variational space which depends on the parameter k. We treated this situation by adapting
the works [26] which first introduced such formulations when studying the ITP with cavities.
We notice that such difficulty did not arise in the study of ITP related to inhomogeneities with

79
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sound soft inclusions inside [32]. The developed framework allows us to prove that the set of
TEs is at most discrete, but only if the inclusion is big enough and provided that the refractive
index n satisfies n > 1. However we could not conclude about the existence of TEs with this
framework and we explain why our various attempts failed. We propose another approach in
order to relax the assumption on n and remove the condition on the size of the inclusion to
obtain the discreteness of the set of TEs. The latter approach relies on the properties of the
Dirichlet-to-Neumann operator.

5.2 Setting of the problem and notations

In this section we recall the Interior Transmission Problem (ITP) in the case of an inhomogeneous
isotropic medium with Neumann obstacle inside and define a suitable space for the solutions.
For more details on the link between the (ITP) and the scattering problem, we refer to chapter
4. We consider an inhomogeneity delimited by a set D ⊂ Rd, with d = 2, 3. The impenetrable
obstacle is materialized by a subset Ω ⊂ D. The set D is assumed to be a connected bounded
domain of Lipschitz boundary and Ω is a domain of Lipschitz boundary which can possibly
be multiply connected. The refractive index n is a complex valued function which is only
defined on D \ Ω. We assume that n ∈ L∞(D \ Ω) and satisfies =m(n) ≥ 0. The ITP is the

following: for given f ∈ H
1
2 (∂D) and g ∈ H−

1
2 (∂D), find (u, v) ∈ L2(D \ Ω) × L2(D) with

u− v ∈ {ϕ ∈ H1(D \ Ω) |∆ϕ ∈ L2(D \ Ω)} such that

∆u+ k2nu = 0 in D \ Ω u− v = f on ∂D

∆v + k2 v = 0 in D ∂νu− ∂νv = g on ∂D

∂νu = 0 on ∂Ω.

(ITP)

The chosen space for u and v is classical since it is known that there exist solutions to ITP
which have only L2 regularity. The one for w := u− v is less classical, but it is the most we can
expect from the variational regularity of w. In this chapter, we will use the following notation
for a given bounded domain X ⊂ Rd,

H1
∆(X) = {ϕ ∈ H1(X) |∆ϕ ∈ L2(X)}. (5.1)

We define ν as the unit outward normal vector to ∂D and ∂Ω. We will be considering traces
on both sides of ∂Ω and introduce the following notation whenever they make sense for a given
function ψ,

∀x ∈ ∂Ω, ψ±(x) = lim
h→0+

ψ(x± hν(x)) and ∂±ν ψ(x) = lim
h→0+

ν(x).∇ψ(x± hν(x)),

so that the upscript + (resp. −) corresponds to the outside trace (resp. inside trace) on ∂Ω.
We also define the jumps of ψ on ∂Ω by

[ψ] := ψ+ − ψ− and

[
∂ψ

∂ν

]
:= ∂+

ν ψ − ∂−ν ψ.

5.3 The fourth order equation approach

5.3.1 Reformulation of the problem

We now write a weak formulation of (ITP) by deriving a fourth order formulation for w. It
consists in rewriting the problem only in terms of w = u − v. To do so, we assume from now
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Ω

D

Γ

ν

ν

Figure 5.1: Sketch of the domain in R2.

on that the coefficient n satisfies 1
n−1 ∈ L

∞(D \Ω). Then subtracting the second equation from

the first in (ITP) gives the following equation for w in D \ Ω:

− 1

k2(n− 1)
(∆ + k2n)w = v in D \ Ω. (5.2)

Then by using the equation on v is derived the fourth order equation, namely

(∆ + k2)(n− 1)−1(∆ + k2n)w = 0 in D \ Ω (5.3)

together with the boundary conditions

w = f on ∂D and ∂νw = g on ∂D. (5.4)

Note that if w is known in D \ Ω then v and u can be retrieved in D \ Ω from equations (5.2)
and u = w + v. Hence it remains to take into account the unknown v in Ω. To this end, let us
extend w in Ω by

w := −v in Ω.

Then w satisfies

∆w + k2w = 0 in Ω, (5.5)

and the Neumann boundary conditions on ∂Ω can be reformulated as

∂+
ν w = ∂−ν w on ∂Ω, (5.6)

and the jump conditions [v] = 0, [∂νv] = 0 on ∂Ω can be expressed in terms of w thanks to
relation (5.2) as

(
1

k2(n− 1)
(∆ + k2n)w

)+

= w− and ∂+
ν

(
1

k2(n− 1)
(∆ + k2n)w

)
= ∂−ν w. (5.7)

The derived equations fully describe (ITP) in terms of w; it can be shown that if
w ∈ H1

∆(D \ Ω)×H1
∆(Ω) is a solution to (5.3)-(5.7), then (u, v) defined by

v =

{
−1

k2(n−1)
(∆w + k2nw) in D \ Ω

−w in Ω
and u = w + v in D \ Ω, (5.8)

is a solution to (ITP).
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5.3.2 Variational formulation

The variational formulation we propose is based on the equations (5.3)-(5.7). The need to
include (5.5) in the variational space, unlike what has been proposed in the study of the ITP
for inhomogeneities with sound soft obstacles [32], is precised below. We define the variational
space as follows,

Vk = {ϕ ∈ H1
∆(D \ Ω)×H1

∆(Ω) such that ∆ϕ+ k2ϕ = 0 in Ω,

ϕ =
∂ϕ

∂ν
= 0 on ∂D and [

∂ϕ

∂ν
] = 0 on ∂Ω}.

Note that Vk depends on k. Vk is equipped with the induced scalar product ofH1
∆(D\Ω)×H1

∆(Ω):

〈ψ,ϕ〉V =

∫
D
ψϕdx+

∫
D\∂Ω

∇ψ∇ϕdx+

∫
D\∂Ω

∆ψ∆ϕdx, (5.9)

and is a Hilbert space for the associated norm ‖ · ‖V =
√
〈·, ·〉V .

To simplify the computations while deriving the variational formulation, we have chosen to
start with the equation on v, namely ∆v + k2v = 0 on D. The function v will be replaced
afterwards by a quantity depending on w given by relation (5.2). Let ϕ ∈ Vk, integrating the
mentioned equation for v against ϕ and applying Green’s second formula gives

0 =

∫
D\Ω

v(∆ϕ+ k2ϕ) dx−
∫
∂Ω
∂+
ν vϕ

+ ds(x) +

∫
∂Ω
v+∂+

ν ϕds(x)

=

∫
D\Ω

v(∆ϕ+ k2nϕ) dx− k2

∫
D\Ω

(n− 1)vϕdx−
∫
∂Ω
∂+
ν vϕ

+ ds(x) +

∫
∂Ω
v+∂+

ν ϕds(x).

(5.10)
We now treat the terms of (5.10) separately. For the first term we use (5.2) to obtain∫

D\Ω
v(∆ϕ+ k2nϕ) dx =

∫
D\Ω

−1

k2(n− 1)
(∆w + k2nw)(∆ϕ+ k2nϕ) dx. (5.11)

For the second and third terms of (5.10) we use relation (5.2) and then Green’s first formula
gives

− k2

∫
D\Ω

(n− 1)vϕdx−
∫
∂Ω
∂+
ν vϕ

+ ds(x) =

∫
D\Ω

(∆w + k2nw)ϕdx−
∫
∂Ω
∂+
ν vϕ

+ ds(x)

= −
∫
D\Ω
∇w∇ϕdx+ k2

∫
D\Ω

nwϕdx−
∫
∂Ω

(∂+
ν v + ∂+

ν w)ϕ+ ds(x). (5.12)

In the previous equation, the last sum on ∂Ω is zero because of the Neumann boundary conditions
∂+
ν w + ∂+

ν v = 0 on ∂Ω. We finally treat the last term of (5.10). It is this term that led us to
impose that the test functions satisfy the Helmholtz equation in Ω so one can simplify it as
follows, ∫

∂Ω
v+∂+

ν ϕds(x) =

∫
∂Ω
v−∂−ν ϕds(x) =

∫
Ω
∇v∇ϕdx− k2

∫
Ω
vϕdx. (5.13)

As mentioned, we chose to extend the unknown w by −v in Ω. Using this relation in the previous
equation gives
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∫
∂Ω
v+∂+

ν ϕds(x) = −
∫

Ω
∇w∇ϕdx+ k2

∫
Ω
wϕdx. (5.14)

Combining (5.11), (5.12) and (5.14) in (5.10) gives after multiplying by −k2

∫
D\Ω

1

n− 1
(∆w+k2nw)(∆ϕ+k2nϕ) dx+k2

∫
D\∂Ω

∇w∇ϕdx−k4

∫
D\Ω

nwϕdx−k4

∫
Ω
wϕdx = 0.

(5.15)
Now let θ ∈ H2(D) be a lifting function such that θ = f , ∂νθ = g on ∂D and θ = 0 in a
neighborhood of Ω. We moreover choose θ such that

‖θ‖H2(D) ≤ C
(
‖f‖

H
3
2 (∂D)

+ ‖g‖
H

1
2 (∂D)

)
. (5.16)

where C is a positive constant. Finally, we obtain the following variational formulation dealing
with w0 = w − θ ∈ Vk. For given θ ∈ H2(D) compactly supported in D \ Ω, find w0 ∈ Vk such
that ∀ϕ ∈ Vk,

∫
D\Ω

(n−1)−1(∆w0+k2nw0)(∆ϕ+k2nϕ) dx+k2

∫
D\∂Ω

∇w0∇ϕdx−k4

∫
D\Ω

nw0ϕdx−k4

∫
Ω
w0ϕdx

=

∫
D\Ω

(n− 1)−1(∆θ + k2nθ)(∆ϕ+ k2nϕ) dx+ k2

∫
D\Ω
∇θ∇ϕdx− k4

∫
D\Ω

nθϕdx. (5.17)

The next theorem gives a first result on the equivalence between the well posedeness of (ITP)
and the variational formulation. It requires k2 not to be a Neumann eigenvalue for −∆ in Ω
for relations (5.8) between the weak solution w and the classical solutions (u, v) of (ITP) to be
valid. This assumption will be dropped in a second step by adding a correction term in the
definition of v.

Theorem 5.3.1.

• If (u, v) is a solution to (ITP), then w0 defined by

w0 = u− v − θ in D \ Ω and w0 = −v − θ in Ω (5.18)

is a solution to (5.17).

• Assume that k2 is not a Neumann eigenvalue for −∆ in Ω. Let w0 be a solution to (5.17)
and set w = w0 + θ. Then (u, v) defined by

v =

{
−1

k2(n−1)
(∆w + k2nw) in D \ Ω

−w in Ω
and u = w + v in D \ Ω, (5.19)

is a solution to (ITP).

Proof. We only need to prove the second point of the theorem. Let w0 be a solution of (5.17)
and define w := w0 + θ. Since any ϕ ∈ C∞c (D \ Ω) extended by zero in Ω is an element of Vk,
we obtain by using this class of test functions in (5.17) that

ϕ ∈ C∞c (D \ Ω),

∫
D\Ω

(∆ + k2)(n− 1)−1(∆ + k2n)wϕdx = 0.
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Then w satisfies (∆ + k2)(n− 1)−1(∆ + k2n)w = 0 in D \Ω in the distributional sense. Conse-
quently v ∈ L2(D) defined by (5.19) satisfies Helmholtz equation in D \Ω but also in Ω because
of the definition of the variational space. We now show that v is a global solution of Helmholtz
equation in D. To this end we show that [v] = 0 and [∂νv] = 0 on ∂Ω. After integrating by
parts in (5.17), it is obtained that for all ϕ ∈ Vk,

〈
∂+
ν

(
1

n− 1
(∆w + k2nw)

)
− k2∂−ν w,ϕ

+
〉
H− 1

2 (∂Ω)×H
1
2 (∂Ω)

−
〈( 1

n− 1
(∆w + k2nw)

)+

− k2w−, ∂+
ν ϕ
〉
H

1
2 (∂Ω)×H− 1

2 (∂Ω)
= 0. (5.20)

With test functions ϕ satisfying ϕ|Ω = 0 we obtain, since ∂νϕ|∂Ω = 0 for such ϕ, that the first

term of (5.20) is zero for arbitrary ϕ+ ∈ H
1
2 (∂Ω). Consequently

∂−ν w = ∂+
ν

(
−1

k2(n− 1)
(∆w + k2nw)

)
on ∂Ω. (5.21)

Then equation (5.20) becomes

∀ϕ ∈ Vk,
∫
∂Ω

{(
1

n− 1
(∆w + k2nw)

)+

− k2w−

}
∂+
ν ϕds(x) = 0, (5.22)

and the hypothesis on k allows one to choose for ∂+
ν ϕ any element of H−

1
2 (∂Ω). As a consequence

we obtain

w− =

(
−1

k2(n− 1)
(∆w + k2nw)

)+

on ∂Ω. (5.23)

Equations (5.21) and (5.23) imply the desired result for v. Then u defined by (5.19) is easily
seen to satisfy the equation ∆u+ k2nu = 0 on D \ Ω.

Now we make more precise the second point of Theorem 5.3.1 in the case where k2 is a
Neumann eigenvalue for −∆ in Ω. We first prove the following lemma.

Lemma 5.3.2. Assume that k2 is a Neumann eigenvalue for −∆ in Ω of multiplicity N ∈ N∗.
The associated basis of eigenfunctions is denoted ϕ1, . . . , ϕN ∈ H1(Ω). Let γ ∈ H

1
2 (∂Ω) and

assume that

∀ϕ ∈ H1(Ω) such that ∆ϕ+ k2ϕ = 0 in Ω, γ satisfies

∫
∂Ω
∂νϕ(y)γ(y) ds(y) = 0. (5.24)

Then γ ∈ span(ϕ1|∂Ω, . . . , ϕN |∂Ω).

Proof. Denoting Φ(x, y) the fundamental solution to the Helmholtz equation, we consider for
x ∈ Rd \ ∂Ω the double layer potential

w(x) =

∫
∂Ω
∂νΦ(x, y)γ(y) ds(y). (5.25)

We recall that the double layer potential satisfies the Helmholtz equation in Rd \ ∂Ω and the
following jump relations [99, Theorem 6.11],
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[w] = γ and [∂νw] = 0 on ∂Ω. (5.26)

Since for all x ∈ Rd \ Ω, Φ(x, ·) satisfies Helmholtz equation in Ω we deduce with assumption
(5.24) that w vanishes in Rd \ Ω. Then (5.26) implies that ∂νw = 0 on ∂Ω and therefore
w is an eigenfunction of −∆ in Ω with Neumann boundary condition. Consequently w ∈
span(ϕ1, . . . , ϕN ) in Ω, and in γ = −w|∂Ω ∈ span(ϕ1|∂Ω, . . . , ϕN |∂Ω).

The following theorem is a generalization of Theorem 5.3.1.

Theorem 5.3.3. Assume that k2 is a Neumann eigenvalue for −∆ in Ω. Then with the same
notation as in Lemma 5.3.2 we have the following result. Let w0 be a solution of (5.17) and set
w = w0 + θ. Then there exists (α1, . . . , αN ) ∈ RN which is uniquely determined such that (u, v)
defined by

v =


−1

k2(n−1)
(∆w + k2nw) in D \ Ω

−w +

N∑
i=1

αiϕi in Ω
and u = w + v in D \ Ω, (5.27)

is a solution to (ITP).

Proof. We can repeat the proof of Theorem 5.3.1 up to equation (5.22). Applying Lemma 5.3.2
gives the existence of α1, . . . , αN ∈ R such that

(
−1

k2(n− 1)
(∆w + k2nw)

)+

= −w− +

N∑
i=1

αiϕi on ∂Ω (5.28)

The αi are uniquely defined since the (ϕi)1≤i≤N are linearly independent. Since ∂νϕi = 0 on
∂Ω, v defined by (5.27) is guaranteed to be a global solution to the Helmholtz homogeneous
equation in D. Once again we easily check that u satisfies ∆u+ k2nu = 0 in D \ Ω.

5.3.3 Fredholm property of the interior transmission problem

We now show that the interior transmission problem satisfies the Fredholm property, that is
uniqueness of solutions for any (f, g) implies existence of solution for any (f, g). By linearity of
the problem (ITP), if (u, v) and (u′, v′) are solutions then (u− u′, v− v′) is a solution with zero
right hand side (i.e f = g = 0), hence with the following definition it is equivalent to say that
the problem is injective or that k is not a transmission eigenvalue.

Definition 5.3.4. Values of k > 0 for which the interior transmission problem (ITP) with
f = g = 0 has non trivial solutions are called transmission eigenvalues.

Using the Riesz representation theorem we define the two following operators Ak and Bk on
Vk,

〈Akw,ϕ〉V =

∫
D\Ω

1

n− 1
∆w∆ϕdx+

∫
Ω

∆w∆ϕdx+ k2

∫
D
∇w∇ϕdx+

∫
D
wϕdx, (5.29)

and
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〈Bkw,ϕ〉V =

∫
D\Ω

(k4 − 1)n+ 1

n− 1
wϕdx+ k2

∫
D\Ω

n

n− 1
(∆wϕ+ w∆ϕ) dx

− (2k4 + 1)

∫
Ω
wϕdx,

(5.30)

for all ϕ ∈ Vk. With these notations, a solution w0 ∈ Vk to (5.17) with θ = 0 is equivalently an
element of Ker(Ak + Bk).

Remark 5.3.5. The variational formulation is never uniquely solvable when k2 is a Neumann
eigenvalue for −∆ in Ω. Indeed if we denote by ϕ1, . . . , ϕN ∈ Vk the corresponding Neumann
eigenfunctions to k2 extended by zero in D \Ω. Then all the ϕi are solutions to (5.17) with θ =
0. However, the constructed functions ϕ1, . . . , ϕN obviously do not correspond to transmission
eigenvalues. In Lemma 5.3.6, more precision is given on the structure of Ker(Ak + Bk), in
particular when k is simultaneously a transmission eigenvalue and such that k2 is a Neumann
eigenvalue for −∆ in Ω.

Lemma 5.3.6. Let k > 0 such that k2 is a Neumann eigenvalue of multiplicity N ∈ N∗ and
define ϕ1, . . . , ϕN ∈ Vk as in Remark 5.3.5. We then have the following results.

• If k is not a transmission eigenvalue then Ker(Ak + Bk) = span(ϕ1, . . . , ϕN )

• If k is a transmission eigenvalue of multiplicity M ∈ N∗, denote by (u1, v1) . . . (uM , vM ) the
corresponding eigenfunctions and define wj ∈ Vk by wj = uj − vj in D \ Ω and wj = −vj
in Ω. Then Ker(Ak + Bk) is a space of dimension M +N given by

Ker(Ak + Bk) = span(ϕ1, . . . , ϕN )⊕ span(w1, . . . , wM ). (5.31)

Proof. We begin with the first point. Assume that k is not a transmission eigenvalue and let
w ∈ Ker(Ak+Bk). According to Theorem 5.3.3, there exists (α1, . . . , αN ) ∈ RN such that (u, v)
defined by (5.27) is a solution to (ITP) with f = g = 0. Since k is not a transmission eigenvalue,
v = 0 on D\Ω. Consequently ∆w+k2nw = −k2(n−1)v = 0 on D\Ω and since the Cauchy data
of w is zero on ∂D we deduce that w = 0 on D \Ω. Finally we deduce thanks to the continuity
of the normal derivative of w on ∂Ω that ∂±ν ϕ|∂Ω = 0 and hence w ∈ span(ϕ1, . . . , ϕN ).

We proceed with the proof of the second point, let k be a transmission eigenvalue of mul-
tiplicity M ∈ N∗. We first prove the direct inclusion, let w ∈ Ker(Ak + Bk). Theorem 5.3.3
implies the existence of ϕ ∈ span(ϕ1, . . . , ϕN ) such that w + ϕ ∈ span(w1, . . . , wM ). Conse-
quently w ∈ span(ϕ1, . . . , ϕN , w1, . . . , wM ). For the reverse inclusion, it suffices to apply the
first point of Theorem 5.3.1 which ensures that wj ∈ Ker(Ak + Bk). It remains to show that
the spaces span(ϕ1, . . . , ϕN ) and span(w1, . . . , wM ) are linearly independent. The latter comes
from the fact that the ϕj are compactly supported in Ω whereas the wj cannot vanish on D \Ω.

Theorem 5.3.7. Assume that there exists ρ ∈] − π
2 ,

π
2 [ such that <e( eiρ

n−1) > α > 0 and that

k > 0 is not a transmission eigenvalue. Then for any pair (f, g) ∈ H
3
2 (∂D) × H

1
2 (∂D), the

interior transmission problem (ITP) has a unique solution (u, v) ∈ L2(D \ Ω)× L2(D) and

‖u‖L2(D\Ω) + ‖v‖L2(D) ≤ C
(
‖f‖

H
3
2 (∂D)

+ ‖g‖
H

1
2 (∂D)

)
. (5.32)

Proof. Let θ ∈ H2(D) be a function with compact support in D \ Ω. The right hand side of
(5.17) defines a function
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F : ϕ 7−→
∫
D\Ω

(n−1)−1(∆θ+k2nθ)(∆ϕ+k2nϕ) dx+k2

∫
D\Ω
∇θ∇ϕdx−k4

∫
D\Ω

nθϕdx (5.33)

which is an antilinear continuous functional on Vk. According to the Riesz representation theo-
rem, there exists a unique l ∈ Vk such that F (ϕ) = 〈l, ϕ〉V for all ϕ ∈ Vk and

‖l‖V = ‖F‖ ≤ C‖θ‖H2(D). (5.34)

With these notations and definitions (5.29),(5.30), a solutions w0 ∈ Vk to (5.17) is equivalently
a solution to

Akw0 + Bkw0 = l in Vk. (5.35)

The assumption on n implies that for all ϕ ∈ V , |〈Akϕ,ϕ〉V | > c‖ϕ‖2V and therefore by the Lax
Milgram theorem, Ak is an isomorphism on Vk. The operator Bk is compact. The proof of this
is classic. For instance consider the part B1

k of the operator Bk given by the first integral in
(5.30), then

∀ϕ ∈ Vk, ‖B1
kϕ‖

2
Vk

=

∫
D\Ω

(k4 − 1)n+ 1

n− 1
ϕB1

kϕdx ≤ C‖ϕ‖L2(D\Ω)‖B
1
kϕ‖Vk (5.36)

Consequently

∀ϕ ∈ Vk, ‖B1
kϕ‖Vk ≤ C‖ϕ‖L2(D\Ω). (5.37)

The compact embedding of H1(D\Ω) in L2(D\Ω) then implies that B1
k is compact. We proceed

in the same way to show that the other terms of Bk are compact. We now conclude with the
Fredholm alternative [20] by distinguishing two cases.

First assume in addition to the hypothesis on k that k2 is not a Neumann eigenvalue for
−∆ in Ω, then the operator (Ak + Bk) is injective. Consequently there exists a unique solution
w0 ∈ Vk to equation (5.35) and ‖w0‖V ≤ C‖l‖V . Theorem 5.3.1 implies that there exists a
unique solution to (ITP) given by (u, v) defined by (5.19) where w := w0 + θ. Since u and v can
be written with w,∆w, both of their L2 norm on D are controlled by ‖w‖V . Finally we deduce
with (5.34) and (5.16) the desired estimate (5.32).

Now assume that k2 is a Neumann eigenvalue for −∆ in Ω of multiplicity N . We define
ϕ1, . . . , ϕN ∈ Vk as in Lemma 5.3.6. Fredholm alternative implies that equation (5.35) is uniquely
solvable since l ∈ Ker(A?+B?)⊥. Indeed it can be shown from (5.29),(5.30) that Ker(A?+B?) =
span(ϕ1, . . . , ϕN ). As a consequence, any ψ ∈ Ker(A? + B?) is compactly supported in Ω and
by definition of F we obtain 〈l, ψ〉V = F (ψ) = 0. We proceed as in the previous paragraph to
obtain the estimate (5.32).

In the following theorem, it is shown similarly to the classical case of inhomogeities, that if
the refractive index has a positive imaginary part then the set of real transmission eigenvalues
is empty.

Theorem 5.3.8. Assume that the index n ∈ L∞(D \Ω) is such that =m(n) > 0 a.e. in a subset
of non empty interior D0 ⊂ D \ Ω. Then the set of real transmission eigenvalues is empty.
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Proof. Let k > 0 and w0 ∈ Vk be a solution to (5.17) with θ = 0. After regrouping terms in
(5.17), we obtain the following equation for w0,

∫
D\Ω

(n− 1)−1|∆w0 + k2w0|2 dx+ k2

∫
D
|∇w0|2 dx− k4

∫
D
|w0|2 dx

+ 2k2

∫
D\Ω
<e
(
w0(∆w0 + k2w0)

)
dx = 0.

Since
∫
D\Ω=m(n − 1)−1|∆w0 + k2w0|2 is the only term having an imaginary part in the above

equation and since =m(n − 1)−1 < 0 a.e in D0, we infer that ∆w0 + k2w0 = 0 in D0. Let (u, v
be the corresponding solution to (ITP) given by (5.19) or (5.27). Then

u = − 1

k2(n− 1)
(∆w0 + k2w0) = 0 in D0. (5.38)

The unique continuation principle implies that u = 0 in D. Therefore the Cauchy data of u
and consequently of v are zero on ∂D. Hence v also vanish in D and k is not a transmission
eigenvalue.

We now turn our attention on the properties of transmission eigenvalues. Because of the
above result, it will be assumed from now on that the refractive index is real valued. In addi-
tion to that, our approach requires the interior transmission problem to satisfies the Fredholm
property. Therefore it is moreover assumed that the refractive index satisfies n− 1 ≥ α > 0 so
that the operator Ak is coercive.

Assumption 5.3.9. The refractive index n ∈ L∞(D) is assumed to be a real valued function.
With the following notations,

n∗ := inf
x∈D

n(x) and n∗ := sup
x∈D

n(x)

it is moreover assumed that n∗ > 1.

Under this assumption, we will be discuss the following points in the indicated order: existence
of a lower bound for TEs, discreteness of the set of TEs, existence of TEs.

5.3.4 Faber-Krahn inequalities for transmission eigenvalues

In this section, it is shown that Ak + Bk : Vk → Vk is coercive for k sufficiently small. This
property will be required to prove the discreteness of the set of TEs. Furthermore a direct
consequence of this result is the existence of a non zero lower bound for TEs. We start by
proving some useful estimates.

Lemma 5.3.10.

• There exists CP > 0 independant of k such that

∀w ∈ Vk, ‖w‖L2(D\Ω) ≤ CP ‖∇w‖L2(D\Ω). (5.39)

The constant is given by

CP = sup
w∈Vk\{0}

‖w‖L2(D\Ω)

‖∇w‖L2(D\Ω)

. (5.40)
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• Let k > 0, and denote by µ2(Ω) the second Neumann eigenvalue for −∆ in Ω. Then we
have

∀w ∈ Vk, ‖w‖2L2(Ω) ≤
1

µ2(Ω)
‖∇w‖2L2(Ω) +

|D \ Ω|
k4|Ω|

‖∆w‖2L2(D\Ω). (5.41)

Proof. One can prove (5.39) by adapting the proof of the classical Poincaré inequality. For the
proof of the second estimate we define for all w ∈ Vk, w = 1

|Ω|
∫

Ωw dx. Since 〈w−w,w〉L2(Ω) = 0,

‖w‖2L2(Ω) = ‖w − w‖2L2(Ω) + ‖w‖2L2(Ω). (5.42)

On the one hand, the Poincaré-Wirtinger inequality [59, section 5.8.1] implies

∀w ∈ Vk, ‖w − w‖2L2(Ω) ≤
1

µ2(Ω)
‖∇w‖2L2(Ω). (5.43)

On the other hand, the equation w = − 1
k2

∆w in Ω gives

‖w‖2L2(Ω) = |Ω||w|2 =
1

k4|Ω|

∣∣∣∣∫
Ω

∆w dx

∣∣∣∣2 .
Then with [∂νw]|Ω = 0, we obtain after using Green’s formula and Cauchy Schwarz inequality

‖w‖2L2(Ω) =
1

k4|Ω|

∣∣∣∣∣
∫
D\Ω

∆w dx

∣∣∣∣∣
2

≤ |D \ Ω|
k4|Ω|

‖∆w‖2L2(D\Ω). (5.44)

Finally the combination of (5.43) and (5.44) in (5.42) gives the result.

Theorem 5.3.11. Assume in addition to Assumption 5.3.9, that(
1− 1

n∗

)
|D| < |Ω|. (5.45)

Then there exists a real K? > 0 such that for all k ∈]0,K?[, Ak + Bk is definite positive on Vk.

Proof. From Assumption 5.3.9 on n and definitions of Ak and Bk (5.29),(5.30), we first obtain

〈(Ak + Bk)w,w〉 =

∫
D\Ω

1

n− 1
|∆w|2 dx+ 2k2

∫
D\Ω

n

n− 1
<e(∆ww) dx+ k2

∫
D
|∇w|2 dx

+ k4

∫
D\Ω

n

n− 1
|w|2 dx− k4

∫
Ω
|w|2 dx

≥ 1

n∗ − 1
‖∆w‖2L2(D\Ω) − 2k2CP

n∗
n∗ − 1

‖∆w‖L2(D\Ω)‖∇w‖L2(D\Ω)

+ k2‖∇w‖2L2(D) − k
4‖w‖2L2(Ω).

We first use estimate (5.43) to obtain

〈(Ak + Bk)w,w〉 ≥

γ‖∆w‖2L2(D\Ω) − 2k2CP
n∗

n∗ − 1
‖∆w‖L2(D\Ω)‖∇w‖L2(D\Ω) + k2‖∇w‖2L2(D\Ω)

+

(
k2 − k4

µ2(Ω)

)
‖∇w‖2L2(Ω)

(5.46)
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where the parameter γ is given by

γ :=
1

n∗ − 1
− |D \ Ω|

|Ω|
. (5.47)

One can show that assumption (5.45) is equivalent to γ > 0. Indeed

(
1− 1

n∗

)
|D| < |Ω| ⇐⇒ n∗

n∗ − 1
>
|D|
|Ω|

⇐⇒ 1

n∗ − 1
>
|D|
|Ω|
− 1 =

|D \ Ω|
|Ω|

. (5.48)

Now choosing k such that γk2 > k4C2
P ( n∗

n∗−1)2 implies that the first line of (5.46) is coercive,
more precisely there exists C1(k) > 0 such that

γ‖∆w‖2L2(D\Ω) − 2k2CP
n∗

n∗ − 1
‖∆w‖L2(D\Ω)‖∇w‖L2(D\Ω) + k2‖∇w‖2L2(D\Ω)

≥ C1(k)(‖∆w‖2L2(D\Ω) + ‖∇w‖2L2(D\Ω)). (5.49)

Consequently if we define

K? = min

(√
µ2(Ω), (1− 1

n∗
)

√
γ

CP

)
(5.50)

then we obtain from (5.46) that for all k ∈]0,K?[, there exists C2(k) > 0 such that

〈(Ak + Bk)w,w〉 ≥ C2(k)(‖∆w‖2L2(D\Ω) + ‖∇w‖2L2(D\Ω) + ‖∇w‖2L2(Ω)). (5.51)

The result is now straightforward since Lemma 5.3.10 implies that the norm ‖w‖ = (‖∆w‖2L2(D\Ω)+

‖∇w‖2L2(D))
1
2 is equivalent to the chosen norm ‖ · ‖Vk on Vk.

Corollary 5.3.12. With the same assumptions and notations of Theorem 5.3.11, if k > 0 is a
transmission eigenvalue then k > K?.

5.3.5 Discreteness of transmission eigenvalues

In this section, we show that the set of transmission eigenvalues is at most discrete. As men-
tioned at the beginning of section 5.3.3, TEs correspond to values of k > 0 for which the operator
Ak + Bk : Vk → Vk has a non trivial kernel. To show that the latter occurs only for a discrete
set of k, we would like to apply the Analytic Fredholm Theorem. But Ak and Bk operate on a
space depending on k. To overcome this problem, we adapt the approach of [27] where the same
difficulty was encountered. A space V which is independent of k and moreover contains every Vk
is introduced. Then the operators Ak and Bk are extended to operators Ãk and B̃k defined on
V via a projection like operator P̃k. We finally conclude by showing that applying the Analytic
Fredholm theorem to this setting implies the desired result.

We introduce the following Hilbert space V , which is obtained by removing the constraint
∆ϕ+ k2ϕ = 0 in Ω of the tests functions in the space Vk:

V = {ϕ ∈ H1
∆(D \ Ω)×H1

∆(Ω) | ϕ|∂D = ∂νϕ|∂D = [
∂ϕ

∂ν
]|∂Ω = 0}. (5.52)
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Note that V does not depend on k and moreover contains every Vk for k ∈ C. The space V is
equipped with the same scalar product 〈·, ·〉V used for the spaces Vk defined at (5.9). We also
introduce the operator θk : V → V which is defined for w ∈ V by

∀x ∈ D, θkw(x) =
1

4

∫
Ω

(∆w + k2w)(y)Y0(k|x− y|) dy, (5.53)

where Y0 denotes the Bessel function of second kind of order zero. As shown in [27], θk depends
analytically on k with <e(k) > 0 and θkw ∈ H2(D). Let χ be a smooth function that equals 1
in Ω and 0 outside of D. We define the following continuous operator

P̃k : V −→ V
w 7−→ w − χθkw.

(5.54)

P̃k also depends analytically on k with positive real part and we observe that

∀w ∈ Vk, θkw = 0 and P̃kw = w. (5.55)

Furthermore for all w ∈ V, ∆θkw + k2θkw = ∆w + k2w in Ω, and as a consequence

∀w ∈ V, P̃kw ∈ Vk. (5.56)

We finally define the operators Ãk and B̃k which extend the operators Ak and Bk on V . They
are defined by the use of the Riesz representation theorem such that for all w and ϕ in V ,

〈Ãkw,ϕ〉V = 〈AkP̃kw, P̃kϕ〉V + α〈θkw, θkϕ〉V ,

〈B̃kw,ϕ〉V = 〈BkP̃kw, P̃kϕ〉V .
(5.57)

The parameter α is a sufficiently large positive constant that will be fixed later. The analyticity
of P̃k and θk, and definitions of Ak and Bk (5.29)-(5.30) imply that Ãk and B̃k depend analytically
on k ∈ C with <e(k) > 0. In addition to that, the operators Ãk and B̃k respectively coincides
with Ak and Bk on Vk when k is real. Indeed it can be shown by using (5.55),(5.57) and observing
that ∀v ∈ Vk, v ∈ Vk, that

∀w ∈ Vk, Ãkw = Akw and B̃kw = Bkw. (5.58)

Consequently if k ∈ R is such that Ak +Bk : Vk → Vk is not injective implies Ãk + B̃k : V → V is
not injective. As a consequence, to prove the discreteness of the set of transmission eigenvalues,
it is sufficient to prove that the set of k > 0 for which the operator Ãk + B̃k : V → V has a non
trivial kernel is at most discrete. We rely on the following theorem, [44, Theorem 8.26]

Theorem 5.3.13 (Analytic Fredholm Theorem). Let Ω be a domain in C and let (Tz)z∈Ω ⊂
L(E) be a family of compact operators such that z 7→ Tz is analytic in Ω. Then either

a) (I + Tz) is not injective for any z ∈ Ω or

b) (I + Tz) is injective for all z ∈ Ω \ S where S is a discrete subset of Ω.

To simplify the presentation, we show this intermediate result.

Lemma 5.3.14. Assume that n satisfies Assumption 5.3.9 and the condition (5.45), and let K?

be defined by (5.50). Then the operators Ãk and B̃k defined by (5.57) satisfies the following,

• There exists α independent from k such that for all k > 0, Ãk is coercive on V.
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• For all k ∈]0,K?[, the operator Ãk + B̃k is injective on V .

Proof. We begin with the first point. After observing that for k real θk(w) = θk(w) and P̃k(w) =
P̃k(w), expression of Ãk simplifies

〈Ãkw,w〉V = 〈AkP̃kw, P̃kw〉V + α‖θkw‖2. (5.59)

On the one hand, from the definition of Ak (5.29), there exists a γk > 0 given for example by
γk = min((n∗ − 1)−1, k2, 1/2) such that

〈Ãkw,w〉V ≥ γk‖P̃kw‖2V + α‖θkw‖2V .

On the other hand we deduce from the expression of P̃k the existence of a constant Cχ depending
only on χ such that

‖P̃kw‖2V ≥ ‖w‖2V − 2Cχ‖w‖V ‖θkw‖V + ‖χθkw‖2V . (5.60)

Hence

〈Ãkw,w〉V ≥ γk‖w‖2V − 2Cχγk‖w‖V ‖θkw‖V + α‖θkw‖2V .

The operator Ãk is then coercive a soon as α satisfies αγk > Cχγ
2
k . Since γk < 1, one can fix a

valid α independent from k with α := C2
χ.

We now prove the second assertion. Let k ∈]0,K?[. According to Theorem 5.3.11, Ak + Bk
is coercive on Vk. Consequently there exists a σk > 0 such that

∀w ∈ V, 〈(Ãk + B̃k)w,w〉V = 〈(Ak + Bk)P̃kw, P̃kw〉V + α‖θkw‖2V
≥ σk‖P̃kw‖2V + α‖θkw‖2V .

(5.61)

Therefore if w ∈ V such that (Ãk + B̃k)w = 0, then P̃kw = θkw = 0. We finally conclude from
the definition of P̃k that w = P̃kw + χθkw = 0.

Theorem 5.3.15. Assume that n satisfies Assumption 5.3.9 and the condition (5.45). Then
the set of transmission eigenvalues is discrete.

Proof. We show that the set of k > 0 such that Ãk + B̃k is non injective is discrete. For this
purpose we apply Theorem 5.3.13 and use the same notations. Since Ãk depends analytically
on k ∈ C and is an isomorphism for k > 0, there exists a set Ω ⊂ C containing the positive real
axis such that Ã−1

k exists and depends analytically to k ∈ Ω. Hence the operator Tk : V → V

defined by Ã−1
k B̃k also depends analytically to k ∈ Ω and is moreover compact because B̃k is

compact. The second point of Lemma 5.3.14 implies the existence of k ∈ Ω such that (I+Tk) is
injective. Consequently, the set of k > 0 for which (I +Tk) is injective, or equivalently Ãk + B̃k,
is at most discrete.

5.3.6 On the existence of transmission eigenvalues

The main purpose of the framework developed in this section is to prove the existence of transmis-
sion eigenvalues since then the variational formulation can be expressed in terms of self-adjoint
operators Ak and Bk. However, it did not allow to conclude about the existence of transmission
eigenvalues, and it is explained in this paragraph what are the difficulties that prevented us
to conclude in the classical way. In a few words, the result on which we rely allows to give
the existence of positive reals k such that Ak + Bk is not injective. But this is not sufficient



5.3 The fourth order equation approach 93

to conclude about the existence of TEs. According to Lemma 5.3.6, one shall moreover prove
that the square of the determined k are not Neumann eigenvalues or otherwise that the dimen-
sion of Ker(Ak +Bk) is larger than the multiplicity of the Neumann eigenvalue k2. Proving this
last fact requires numerous restrictive conditions on n and Ω that cannot be valid simultaneously.

Before going any further, we place ourselves in a setting that allows us to apply Lemma

5.3.16. Since Ak : Vk −→ Vk is definite positive and self-adjoint, the operators A±
1
2

k are well

defined. Both are self-adjoint, positive definite and satisfies A
1
2
kA

1
2
k = Ak and A

1
2
kA
− 1

2
k = Ik where

Ik is the identity on Vk. Obviously, the kernel of Ak + Bk is nontrivial if and only if the kernel
of the operator

Ik + A−
1
2

k BkA
− 1

2
k : Vk −→ Vk (5.62)

is nontrivial. In order to avoid dealing with function spaces depending on k we introduce the
orthogonal projection operator Pk : V → V and the canonical injection Rk : Vk → V where the
space V is defined as in (5.52). We then consider the (compact) operator Tk : V → V by

Tk := RkA
− 1

2
k BkA

− 1
2

k Pk. (5.63)

Denoting I the identity operator on V , one can easily check that

Ker(I + Tk) = A
1
2
k ·Ker(Ak + Bk). (5.64)

Consequently the nullspace of I + Tk and of Ak + Bk have the same (finite) dimension and we
can equivalently deal with the operator I + Tk to show the existence of TEs. It is shown in
[27] that Pk depends continuously on the parameter k > 0. Moreover the proof of Corollary 4.6
of this paper can be transposed in our situation to prove that Tk also depends continuously on
k. We denote by λi(k) the ith negative eigenvalue of the compact and self-adjoint operator Tk
(ordered in the increasing order). From the max-min we notice that each λi(k) are continuous
functions of k. We then have the following useful result proved in [29]. It gives existence of k
for which Ker(I + Tk) is nontrivial, or equivalently existence of k such that 1 + λi(k) = 0.

Lemma 5.3.16. Assume that

1. There is a k0 > 0 such that I + Tk0 is positive on V .

2. There is a k1 > k0 such that I + Tk1 is non positive on a p-dimensional subspace W of V .

Then the equation 1 + λi(k) = 0 has p solutions in [k0, k1] counting their multiplicity.

Now let ε > 0 be small enough such that D \ Ω contains m(ε) ≥ 1 pairwise disjoint balls of
radius ε denoted B1

ε , . . . B
m
ε . Assuming that(

1− 1

n∗

)
|D| < |Ω|, (5.65)

one can easily prove by using Lemma 5.3.16 and (5.64) that equation 1 + λi(k) = 0 has m(ε)
solutions in [K?, ξn∗/ε], where K? is defined by (5.50) and ξn∗ is the first transmission eigenvalue
of the interior transmission problem for the unit ball with index n∗. Indeed since the positivity
of Ak+Bk implies the positivity of I+Tk, we infer from Theorem 5.3.11 that the first point of the
Lemma is valid for k0 = K?. For the second point we denote by wjε ∈ H2

0 (Bj
ε ) the eigenfunction of

the transmission eigenvalue problem on B1
ε , . . . B

m
ε with constant refractive index n∗ associated
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to the first transmission eigenvalue given by kε = ξn∗
ε . We then define wj ∈ Vk the continuation

by zero of each wjε to the whole of D \Ω. The family (wj)j form an orthogonal family since the
wj are of disjoint compact support. We show that I + Tk is negative on the m(ε)-dimensional

space span(A−
1
2

k wj),

〈(I + Tkε)A
−1/2
kε

wj ,A−1/2
kε

wj〉V
= 〈(Akε + Bkε)wj , wj〉V

=

∫
D\Ω

1

n− 1
|∆wj + k2

εw
j |2 dx+ 2k2

ε

∫
D\Ω
<e(∆wjwj) dx

+ k2
ε

∫
D
|∇wj |2 dx+ k4

ε

∫
D\Ω
|wj |2 dx− k4

ε

∫
Ω
|wj |2 dx

=

∫
Bjε

1

(n− 1)
|∆wj + k2

εw
j |2 dx− k2

ε

∫
Bjε

|∇wj |2 dx+ k4
ε

∫
Bjε

|wj |2 dx

≤
∫
Bjε

1

(n∗ − 1)
|∆wj + k2

εw
j |2 dx− k2

ε

∫
Bjε

|∇wj |2 dx+ k4
ε

∫
Bjε

|wj |2 dx

= 0.

We have finally shown the existence of values of k ∈ [K?, ξn∗/ε] for which Ak+Bk is not injective
and the cumulative dimension of the nullspaces for these k is equal to m(ε).

To conclude on the existence of transmission eigenvalues one needs to ensure that m(ε) is
greater than the number of occurence for k2 being a Neumann eigenvalue for k ∈ [K?, ξn∗/ε].
The two approaches we tried, and that we explain hereafter were unsuccessful.

First temptative approach using the Weyl asymptotic formula

For µ > 0 we denote by NΩ(µ) the counting function of the Neumann eigenvalues for −∆ in Ω
(counting multiplicities). We recall the Weyl asymptotic formula [121],

NΩ(µ) ∼
µ→+∞

Bd|Ω|µd/2

(2π)d
(5.66)

where Bd is the d-dimensional measure of the unit ball in Rd. Consequently we have the following
estimate,

NΩ

(
ξ2
n∗

ε2

)
∼
ε→0

Bd|Ω|ξdn∗

(2π)dεd
. (5.67)

In addition to this we have that m(ε) ∼
ε→0
|D \ Ω|/Bd. Consequently, asking that n and Ω to

satisfy in addition to (5.65),

|D \ Ω|
Bd

>
Bd|Ω|ξdn∗

(2π)d
(5.68)

would imply the existence of infinitely many transmission eigenvalues. However the condition
(5.68) is equivalent to

|D|

(
1 +

B2
dξ
d
n∗

(2π)d

)−1

> |Ω| (5.69)

and asking for this condition together with condition (5.65) necessitates at least that
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(
1 +

B2
dξ
d
n∗

(2π)d

)(
1− 1

n∗

)
< 1. (5.70)

Numerical simulations in the two dimensional case show that the latter is not valid in general.

Second temptative approach for the existence of at least one transmission eigenvalue
in (0,

√
µ2)

We now discuss the possibility of finding at least one transmission eigenvalue k such that k2 ≤ µ2.
To this end we fix ε such that k2

ε = µ2, and define ϕj ∈ Vkε the Neumann eigenfunctions that
have been extended by zero to D. We know that the ϕj are in the nullspace of Akε + Bkε . Now
if we can include a ball Bε in D \ Ω then similarly to above we could show that the element
wε ∈ Vkε defined as the continuation by zero to D of the eigenfunction of the first transmission
eigenvalue for the ball Bε of constant refractive index n∗. Lemma 5.3.16 would then imply the
existence of a transmission eigenvalue in ]0,

√
µ2]. The existence of such a ball Bε ⊂ D \ Ω

requires since ε = ξn∗/
√
µ2

|Bε|+ |Ω| =
Bdξ

d
n∗

µ
d/2
2

+ |Ω| < |D|, (5.71)

or equivalently

Bdξ
d
n∗

µ
d/2
2 |Ω|

+ 1 <
|D|
|Ω|

. (5.72)

This together with the condition (5.65) requires to ask for the following condition,(
1 +

Bdξ
d
n∗

µ
d/2
2 |Ω|

)(
1− 1

n∗

)
< 1. (5.73)

Once again, numerical simulations in the two dimensional case shows that the latter is not valid
in general.

5.4 Discreteness of transmission eigenvalues via the Dirichlet-
to-Neumann approach

Proving the discreteness of the set of TEs with the previous developed framework required an
unusual constraint on the size of the impenetrable obstacle Ω (5.45). This condition does not
have any physical meaning to our knowledge. The purpose of this section is to establish the
discreteness result by removing this condition.

5.4.1 Main analysis

Let D ⊂ Rd, d ≥ 2, be a domain with smooth boundary. Let ω be a domain with Lipschitz
boundary such that ω ⊂ D. We shall denote Ω := D \ω and we assume that D is connected. In
the present note, we are interested in the following interior transmission problem

Find (u, v) ∈ L2(Ω)× L2(D) such that

∆u− λnu = 0 in Ω u− v = 0 on ∂D

∆v − λv = 0 in D ∂νu− ∂νv = 0 on ∂D.

∂νu = 0 on ∂ω

(5.74)
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Here n ∈ L∞(Ω) is a real valued function such that n ≥ C > 0 in Ω. We shall say that λ is a
transmission eigenvalue if there is (u, v) 6= (0, 0) solving (5.74). Our goal is to prove that the
set of eigenvalues is discrete in the complex plane. To proceed, we shall mix some ideas from
[114, 88, 76, 103]. In our analysis, we shall assume that there is a connected open set V ⊂ Ω
with ∂D ⊂ V and V ∩ ω = ∅ such that n ∈ W1,∞(V). Moreover, we shall assume that we have
either

n− 1 ≥ C > 0 in V or 1− n ≥ C > 0 in V.

Introduce some function ñ ∈ L∞(D) such that ñ = n in V and such that, according to the
assumption made on n, we have either ñ− 1 ≥ C > 0 in D or 1− ñ ≥ C > 0 in D.

For λ ∈ C \ S , where S is a discrete set of (−∞; 0), we define the Dirichlet-to-Neumann
maps Λn(λ), Λñ(λ), Λ(λ) : H−1/2(∂D)→ H−3/2(∂D) such that for g ∈ H−1/2(∂D)

Λn(λ)g = ∂νu, Λñ(λ)g = ∂ν ũ, Λ(λ)g = ∂νv

where u ∈ L2(Ω), ũ ∈ L2(D), v ∈ L2(D) are the functions which solve

∆u− λnu = 0 in Ω
u = g on ∂D

∂νu = 0 on ∂Ω

∆ũ− λñũ = 0 in D
ũ = g on ∂D

∆v − λv = 0 in D
v = g on ∂D.

(5.75)

For λ ∈ C \ (S ∪ {0}), define the operators

A(λ) :=
Λn(λ)− Λ(λ)

λ
and Ã(λ) :=

Λñ(λ)− Λ(λ)

λ
· (5.76)

Lemma 5.4.1. Assume that λ ∈ C \ (S ∪ {0}). Then λ is a transmission eigenvalue if and
only if ker A(λ) 6= {0}.

Proof. Assume that λ ∈ C \ (S ∪ {0}) is a transmission eigenvalue. Set g := u = v where (u, v)
is an eigenpair for (5.74). Clearly, we have g 6≡ 0 otherwise we would have u ≡ v ≡ 0 which
is impossible because λ /∈ S . According to (5.74) there holds A(λ)g = 0 which shows that
ker A(λ) 6= {0}.
Now if g ∈ ker A(λ) \ {0}. Define u and v as in (5.75). Then (u, v) 6= (0, 0) solves (5.74).

Lemma 5.4.2. For all λ ∈ C\(S ∪{0}), the operators A(λ), Ã(λ) are bounded from H−1/2(∂D)
in H+1/2(∂D).

Proof. We show the result for A(λ), the proof is completely similar for Ã(λ). Pick some g ∈
H−1/2(∂D) and introduce the functions u, v as in (5.75). We have A(λ)g = ∂νw where w :=
λ−1(u− v) in Ω. Since w ∈ L2(Ω) satisfies w = 0 on ∂D and ∆w− λnw = (n− 1)v in Ω, results
of interior regularity (see e.g. [96]) guarantee that w ∈ H2(V) with ‖w‖H2(V) ≤ C ‖v‖L2(Ω). Since
we have ‖v‖L2(Ω) ≤ ‖v‖L2(D) ≤ C ‖g‖H−1/2(∂D), we can write

‖A(λ)g‖H1/2(∂D) = ‖∂νw‖H1/2(∂D) ≤ C ‖w‖H2(V) ≤ C ‖v‖L2(Ω) ≤ C ‖g‖H−1/2(∂D). (5.77)

This shows that A(λ) is bounded from H−1/2(∂D) to H+1/2(∂D).

Now we state three propositions that we will combine in order to get the main result of the note.
The proofs will be given in the Section 5.4.2 below.

Proposition 5.4.3. There is λ0 ≥ 0 such that for all λ ≥ λ0, the operator Ã(λ) : H−1/2(∂D)→
H1/2(∂D) is an isomorphism.
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Proposition 5.4.4. For all λ ∈ C \ (S ∪ {0}), the operator A(λ) − Ã(λ0) : H−1/2(∂D) →
H1/2(∂D) is compact.

Proposition 5.4.5. There is λ1 ≥ 0 such that for all λ ≥ λ1, the operator A(λ) : H−1/2(∂D)→
H1/2(∂D) is injective.

We can now prove the main theorem of this note.

Theorem 5.4.6. Assume that the coefficient n ∈ L∞(Ω), with n ∈ W1,∞(V), is such that we
have either

n− 1 ≥ C > 0 in V or 1− n ≥ C > 0 in V.

Then the set of transmission eigenvalues for Problem (5.74) is discrete in C.

Proof. According to Lemma 5.4.1, in order to prove this result, it suffices to show that the set
of λ ∈ C \ (S ∪ {0}) such that A(λ) has a non zero kernel is discrete. Let us write

A(λ) = I +K(λ) with I := Ã(λ0) and K(λ) := A(λ)− Ã(λ0).

Proposition 5.4.3 ensures that I : H−1/2(∂D)→ H1/2(∂D) is an isomorphism. Moreover, Propo-
sition 5.4.4 guarantees that K(λ) : H−1/2(∂D) → H1/2(∂D) is compact. Since λ 7→ K(λ) is
analytic and since A(λ1) is injective (Proposition 5.4.5), we deduce from the analytical Fred-
holm theorem that A(λ) is invertible for all λ ∈ C \ (S ∪ {0}), except maybe for a discrete set
of λ.

In the remaining part of the note, we show the intermediate results needed in the above analysis.

5.4.2 Proof of the intermediate results

Proof of Proposition 5.4.3. For h ∈ H1/2(∂D), let us introduce the following interior transmission
problem

Find (ũ, v) ∈ L2(D)× L2(D) such that

∆ũ− λñũ = 0 in D ũ− v = 0 on ∂D

∆v − λv = 0 in D ∂ν ũ− ∂νv = h on ∂D.

(5.78)

Due the features of ñ, the analysis of (5.78) is relatively simple. More precisely, since we have
either ñ − 1 ≥ C > 0 in D or 1 − ñ ≥ C > 0 in D, it is now well-known that (5.78) admits
a unique solution for λ ≥ λ0 ≥ 0. Since Ã(λ) : H−1/2(∂D) → H1/2(∂D) is bounded (Lemma
5.4.2), this is enough to show that Ã(λ) : H−1/2(∂D)→ H1/2(∂D) is an isomorphism for λ ≥ λ0.
�

Proof of Proposition 5.4.4. Let us prove that A(λ) − Ã(λ0) : H−1/2(∂D) → H1/2(∂D) is a
compact operator for all λ ∈ C \ (S ∪ {0}). Denote u0, ũ0, v0 the solutions of (5.75) with
λ = λ0. In Ω, set w := λ−1(u − v) and w̃0 := λ−1

0 (ũ0 − v0). Since n = ñ in V, these functions
satisfy

∆w − λnw = (n− 1)v in V and ∆w̃0 − λ0nw̃0 = (n− 1)ṽ0 in V.

Introduce the function e such that e = w − w̃0 in V. We have

(A(λ)− Ã(λ0))g = ∂νe. (5.79)

A direct calculation gives

∆e− λne = (n− 1)(v − ṽ0) + (λ− λ0)nw̃0 in V. (5.80)
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Note that to obtain the equation (5.80), it was crucial in the definition of A(λ), Ã(λ) (see (5.76))
to divide by λ. Let us prove that the right hand side of (5.80) is in H1(V). We have v − ṽ0 = 0
on ∂D and ∆(v − ṽ0) − λ(v − ṽ0) = (λ − λ0)ṽ0 in D. Therefore, results of elliptic regularity
ensure that v − ṽ0 ∈ H2(D) with

‖v − ṽ0‖H2(D) ≤ C ‖ṽ0‖L2(D) ≤ C ‖g‖H−1/2(∂D).

Using the equivalent of estimate (5.77) for w̃0, we can write (here we use the assumption that
n ∈W1,∞(V))

‖(n− 1)(v − ṽ0) + (λ− λ0)nw̃0‖H1(V) ≤ C ‖g‖H−1/2(∂D). (5.81)

Introduce O ⊂ V ⊂ Ω a neighbourhood of ∂D such that (O ∩ Ω) ⊂ V. Since e = 0 on ∂D, from
(5.80), (5.81), we obtain e ∈ H3(O) with ‖e‖H3(O) ≤ C ‖g‖H−1/2(∂D). From (5.79), we infer that

A(λ)− Ã(λ0) is a bounded operator from H−1/2(∂D) to H3/2(∂D). This is enough to conclude
that A(λ)− Ã(λ0) : H−1/2(∂D)→ H1/2(∂D) is compact. �

Proof of Proposition 5.4.5. Let g ∈ H−1/2(∂D) be in the kernel of A(λ). Define the func-
tions u, v as in (5.75). Introduce a smooth cut-off function ζ such that ζ = 1 in O (the domain
O is the one introduced after (5.81)) and ζ = 0 in D \ V. Set u := ζu (we extend u by zero in
ω). Since n = ñ on the support of ζ, we have

∆u− λñu = f in D

∆v − λv = 0 in D

(u, v) ∈ L2(D)× L2(D) with e := u− v ∈ H2
0(D),

(5.82)

where f := 2∇u · ∇ζ + u∆ζ. Results of interior regularity guarantee that f ∈ L2(D). Moreover,
using the Lemma 5.4.7 below, one can prove the estimate

‖f‖L2(D) ≤ C e−c λ‖u‖L2(O). (5.83)

Here c > 0 is a constant independent of λ. Working from (5.82), we find

∆e− λñe = f + λ(ñ− 1)v in D

∆e− λe = f + λ(ñ− 1)u in D.

Multiplying by e and integrating by parts, we deduce∫
D
|∇e|2 + ñλ|e|2 dx =

∫
D
f e dx+ λ

∫
D

(1− ñ)ve dx∫
D
|∇e|2 + λ|e|2 dx =

∫
D
f e dx+ λ

∫
D

(1− ñ)ue dx.

Replacing e by u− v in the right hand sides, we obtain∫
D
|∇e|2 + ñλ|e|2 dx+ λ

∫
D

(1− ñ)|v|2 dx =

∫
D
f e dx+ λ

∫
D

(1− ñ)vu dx∫
D
|∇e|2 + λ|e|2 dx+ λ

∫
D

(ñ− 1)|u|2 dx =

∫
D
f e dx− λ

∫
D

(1− ñ)uv dx.

(5.84)

Now multiplying the equation ∆v − λv = 0 in D by e and integrating twice by part, we get

0 =

∫
D

(∆v − λv)e dx =

∫
D
v(∆e− λe) dx =

∫
D
v f dx+ λ

∫
D

(ñ− 1)vu dx. (5.85)



5.4 Discreteness of transmission eigenvalues via the Dirichlet-to-Neumann approach 99

Using (5.85) in (5.84), we deduce that, for λ > 0,∫
D
|∇e|2 + ñλ|e|2 dx+ λ

∫
D

(1− ñ)|v|2 dx =

∫
D
f e dx+

∫
D
v f dx∫

D
|∇e|2 + λ|e|2 dx+ λ

∫
D

(ñ− 1)|u|2 dx =

∫
D
f e dx−

∫
D
v f dx.

(5.86)

Now, thanks to (5.83), we can write∣∣∣∣ ∫
D
f e dx+

∫
D
v f dx

∣∣∣∣ ≤ C e−c λ‖u‖L2(O)

(
‖e‖L2(D) + ‖v‖L2(D)

)
≤ C e−c λ‖e + v‖L2(O)

(
‖e‖L2(D) + ‖v‖L2(D)

)
≤ C e−c λ

(
‖e‖2L2(D) + ‖v‖2L2(D)

)
.

(5.87)

Using (5.87) in the first identity of (5.86), we conclude that e = v = 0 in D for λ > 0 large
enough when 1 − ñ ≥ C > 0 in D. This implies also u = 0 in Ω (by unique continuation),
g = 0 on ∂D and shows that A(λ) is injective. Adapting (5.87) and using the second identity of
(5.86), we prove similarly that A(λ) is injective for λ > 0 large enough when ñ−1 ≥ C > 0 in D.�

Below, we state a classical result. Its proof can be found e.g. in [55, Lem. 3.1] or in [103,
Lem. 2].

Lemma 5.4.7. Let U , Uint, be two domains with Lipschitz boundary such that Uint ⊂ U . Let
γ ∈ L∞(U) be a function such that γ ≥ C > 0 in U . Then there are constants C > 0, c > 0 such
that for any ϕ ∈ L2(U) satisfying ∆ϕ− λγϕ = 0 in U , for λ large enough, we have

‖ϕ‖H1(Uint) ≤ C e
−c λ‖ϕ‖L2(U\Uint).
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Chapter 6

Local estimates of crack densities in
crack networks
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6.1 Introduction

In inverse scattering theory, the main procedure which is followed while probing objects is
simple: incident waves are sent to the object and information on the latter are deduced from
the measured far field of the resulting scattered fields. When the obstacle is penetrable, many
inversion algorithms, in particular the Sampling Methods (e.g. Linear Sampling Method (LSM)
[47], Factorization Method (FM) [80], Generalized Linear Sampling Method (GLSM) [10]) require
to avoid particular wavenumbers, called Transmission Eigenvalues. These values correspond to
the spectrum of the Interior Transmission Problem (ITP), a boundary value problem defined
on the support of the obstacle which combines two partial differential equations. The physical
interpretation of TEs is that for such wavenumbers, an incident wave for which the resulting far
field is arbitrarily small can be found. Because of the failure of the Sampling Methods at TEs,
showing that they form at most a discrete set was imperative. This property has been proved
in a general case [43, 113]. However, the importance of TEs recently increased as a result to a
series of papers. It has been shown in [28, 31, 25] that TEs can be computed from far field data,
and moreover that the knowledge of these can be used to infer qualitative information on the
material [22, 31, 63, 66]. However, recovering sharp information from TEs is not an easy task.
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The main difficulty relies in the fact that they cannot be viewed as the spectrum of a selfadjoint
operator. To overcome this difficulty, recent works [6, 30, 5, 41] suggested to rather consider a
modified spectrum that we refer to as Relative Transmission Eigenvalues (RTEs) and that can
still be computed from far field data. The original proposed idea consists in the introduction
of an artificial background that can be chosen by the observer. This time RTEs correspond to
the spectrum of a new transmission problem, the Relative Transmission Problem(RTP), which
indicates that for such wavenumbers there exists an incident field such that the far field resulting
from the effective background and the one resulting from the artificial background are arbitrarily
close. The advantage of using RTEs is that they depend on the artificial background which can
be fit as desired, in accordance with the problem under consideration. Hence choosing the
appropriate setting for the artificial obstacle, such as the position, the geometry, whether the
obstacle is penetrable or not and the corresponding refractive index or boundary conditions, can
greatly simplify the link between the RTEs and the parameters of interest. In this chapter we
shall adapt these ideas for crack monitoring perspectives.

We consider the problem of identifying a set of cracks Γ embedded in some homogeneous
background from measured far field data at multiple frequencies generated by acoustic waves.
First of all we point out that this framework do not allow to define usual TEs since a crack has
empty interior. Working with an artificial sound-soft (resp. sound-hard) obstacle Ω, we show
that it is possible to define RTEs. The latter mainly correspond to the Dirichlet eigenvalues
(DEs) (resp. Neumann eigenvalues (NEs)) for the Laplace operator in Ω, with the exception
that the corresponding eigenfunction u satisfies the additional condition σ(u) = 0 on Γ, where
σ denotes the boundary conditions on Γ. Hence, each RTE is a perturbation δ(Ω,Γ) of a DE
(resp. NE) which encodes the additional condition satisfied by the associated eigenfunction. In
addition to this, we show that RTEs can be determined from the data. For this purpose, we
adapt the framework of the use of GLSM to compute TEs [10]. Consequently, it is possible to
measure the difference δ(Ω,Γ) between the computed RTEs and the known DEs (resp. NEs). In
the case of sound-soft cracks, sound-hard cracks or impedance cracks, we prove that Γ 7→ δ(Ω,Γ)
is monotonous with respect to Γ∩Ω for the inclusion order. This result led us to use δ(Ω,Γ) as
an estimator of |Γ ∩ Ω|: we refer this quantity to the localized crack density in Ω. At last, an
indicator function of the local crack density at each point is obtained by repeating this process
and computing (δ(Ω + t,Γ))t for a collection of artificial backgrounds (Ω + t)t∈A⊂R3 , made of
translations of Ω, which scans the probed area. The resolution of this method is fixed by the
size of Ω. Numerical simulations carried in the a two dimensional setting validates expected
behavior of this indicator function.

A weak point to the method described above is the high numerical cost of the computations
of the RTEs associated to one artificial background. Since increasing the resolution (reduce the
size of Ω) requires to increase the number of considered artificial backgrounds, imaging with
high resolution may be prohibitive. To bypass this drawback, we suggest another method which
requires to deal with far field data at only one fixed frequency. This alternative approach mix
the notion of artificial background with the ideas of the Differential Linear Sampling Method
[9]. Indeed we consider the same Ω of the previous paragraph and compare two functions u and
ũ which are the solutions of two different problems. ũ is the solution of the Helmholtz equation
in Ω whereas u is the solution of RTP, which is the Helmholtz equation on Ω \ Γ. On the one
hand, ũ can be computed independently to the data. On the other hand, we show that when the
wavenumber is not a RTE, the GLSM can be used to approximate u. Consequently it is possible
to detect the presence of the crack by computing the difference between u and ũ which is non
zero when Γ ∩ Ω 6= ∅. Repeating this procedure for a collection of artificial backgrounds allow
in principle to determine the position of the crack. On the presented numerical simulation, it
seems that this indicator moreover reveals the crack density of the probed medium.
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After having introduced the notation in a first section, the inversion method using RTEs, and
the one inspired by the DLSM are treated in two separate sections. In view of the preexisting
works related to crack detection [11, 87, 19, 23], our method makes more sense when it comes
to quantifying crack networks or aggregates of small cracks.

6.2 Setting of the problem

We consider a set of cracks Γ ⊂ Rd, with d = 2 or 3, embedded in a homogeneous background.
The cracks are modeled by non intersecting open arcs/surfaces which are a portion of the bound-
ary of a Lipschitz domain A. The unit normal vector ν on Γ is chosen to be outward to A.

D
D

Γ

ν ν

D

ν

Figure 6.1: Example of setting in R2.

In this setting, the modeling of the scattering problem with the Helmholtz equation for the
total field u ∈ H1

loc(Rd \ Γ) reads

∆u+ k2 u = 0 in Rd \ Γ

σ(u) = 0 on Γ
(6.1)

where k > 0 is the wave number and σ(u) a boundary operator that will be precised later. Given
an incident field ui, the scattered field us := u− ui then satisfies

∆us + k2 us = 0 in Rd \ Γ

σ(us) = −σ(ui) on Γ.
(6.2)

We select the outgoing solution of (6.2) which satisfies the Sommerfeld radiation condition,

lim
r→+∞

r
d−1
2

(
∂us
∂r
− ikus

)
= 0, (6.3)

uniformly with respect to x/|x|. As a consequence, us has the following expansion

us(x) = eik|x||x|−
d−1
2

(
u∞s (x̂) +O(1/|x|)

)
, (6.4)

as |x| → +∞, uniformly in x̂ = x/|x| ∈ Sd−1, where Sd−1 denotes the unit sphere of Rd. The
function u∞s : Sd−1 → C, is called the far field pattern associated with ui. We are interested
in far field patterns associated with a particular class of incident waves called Herglotz wave
functions defined for g ∈ L2(Sd−1) by

vg :=

∫
Sd−1

g(θ)eikθ·x ds(θ). (6.5)

We denote by u∞s (θ, x̂) the far field pattern associated to ui(θ, ·) := eikθ·x for θ ∈ Sd−1 (incident
plane wave of direction θ). Thanks to the linearity of the scattering problem (6.2)-(6.3), the far
field pattern associated to the Herglotz wave vg is given by
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(Fg)(x̂) =

∫
Sd−1

g(θ)u∞s (θ, x̂) ds(θ). (6.6)

This defines the so called far field operator F : L2(Sd−1)→ L2(Sd−1) which constitutes the data
of the inverse scattering problem where one is interested in recovering qualitative information
on the crack Γ.

In this chapter we propose two methods relying on the concept of artificial backgrounds to
retrieve the position of the crack. The first approach which is a quite straightforward adaptation
of the work in [6], where TEs with artificial backgrounds is introduced, is developed in the next
section. The described method allows us to isolate the crack but also to quantify small crack
aggregates. Nevertheless this technique requires data at multiple frequencies and its implemen-
tation is quite expensive. To overcome this issue we propose in a final section an alternative
method inspired by the Differential Linear Sampling Method which requires only data at fixed
frequency and fewer computations.

6.3 Quantification of crack density using relative transmission
eigenvalues

The perturbation of measured far field data with far fields generated by an artificial background
in order to simplify the transmission eigenvalue problem has been developed in [6] for isotropic
inhomogeneities. In our setting, the use of artificial backgrounds is especially interesting because
it allows to define a transmission problem which usually does not exist for scatterers of empty
interior. After defining the relative far field operator, we will derive an associated boundary
eigenvalue problem whose spectrum is shown to carry straightforward information on the cracks.
Furthermore it will be shown that the spectrum can be computed from collected far field data
at multiple frequencies. The possibility to quantify small crack aggregates with this spectrum
will be illustrated with some numerical simulations.

6.3.1 The relative far field operator for cracks embedded in free space

We introduce an impenetrable obstacle Ω ⊂ Rd of smooth boundary. We can freely choose
the shape and the position of Ω but also the prescribed boundary condition on ∂Ω which will
be generally denoted by an operator B. For the latter, we will consider in our study two
possibilities, either the Dirichlet boundary condition Bw = w|∂Ω, or the Neumann boundary
condition Bw = ∂νw|∂Ω. We will also denote by B∗ the adjoint operator of B. For a given

incident wave ui, we consider the exterior scattering problem to Ω: find ũs ∈ H1
loc(Rd \ Ω) such

that

∆ũs + k2ũs = 0 in Rd \ Ω
Bũs = −Bui on ∂Ω

lim
r→+∞

r
d−1
2

(
∂ũs
∂r
− ikũs

)
= 0.

(6.7)

Similarly to the previous section, we define the far field operator F̃ : L2(Sd−1) → L2(Sd−1)
associated to problem (6.7). Note that F̃ can be computed numerically independently from F .
The relative far field operator F rel : L2(Sd−1)→ L2(Sd−1) is finally defined by

F rel := F − F̃ . (6.8)
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We now give a factorization of the relative far field operator. For g ∈ L2(Sd−1), let ugs and ũgs be
respectively the outgoing solutions of (6.2) and (6.7), for the same given incident field ui = vg.
We define the quantity

w =

{
ugs − ũgs in Rd \ Ω
ugs + vg in Ω

(6.9)

so that w∞ = F relg. The function w ∈ H1
loc(Rd \ {Ω ∪ Γ})×H1(Ω \ Γ) and satisfies

∆w + k2w = 0 in Rd \ {Ω ∪ Γ} [B∗w] = −ψ1 on ∂Ω
σ(w) = 0 on Γ ∩ Ω σ(w) = −ψ2 on Γ ∩ Ωc

lim
r→+∞

r
d−1
2 ( ∂w

∂r −ikw) = 0 [Bw] = 0 on ∂Ω
(6.10)

where ψ1 = B∗(vg + ũgs) and ψ2 = σ(vg + ũgs). We define the intermediate operators

H∂Ω : L2(Sd−1) −→ X∗(∂Ω)
g 7−→ B∗(vg + ũgs)

ΨΓ : L2(Sd−1) −→ Y (Γ ∩ Ωc)
g 7−→ σ(vg + ũgs)

(6.11)

where the spaces X(∂Ω) and Y (Γ ∩ Ωc) correspond to Sobolev spaces on ∂Ω and Γ ∩ Ωc whose

definition depends on the boundary conditions B and σ. We choose the usual ones, H
1
2 for

Dirichlet boundary conditions and H−
1
2 for impedance boundary conditions. Furthermore, the

space X∗(∂Ω) denotes the dual space of X(∂Ω). We then define

Hrel : L2(Sd−1) −→ X∗(∂Ω)× Y (Γ ∩ Ωc)
g 7−→ (H∂Ωg,ΨΓg),

(6.12)

and

Grel : X∗(∂Ω)× Y (Γ ∩ Ωc) −→ L2(Sd−1)
(ψ1, ψ2) 7−→ w∞,

(6.13)

where w is the solution of (6.10). The following factorization of F rel is then straightforward,

F rel = GrelHrel. (6.14)

6.3.2 Relative transmission eigenvalues

We are interested in numbers k ∈ C for which the nullspace of Grel is not trivial. For such
a k there exists a non trivial element (ψ1, ψ2) ∈ X∗(∂Ω) × Y (Γ ∩ Ωc) such that the solution
w ∈ H1

loc(Rd \ {Ω∪Γ})×H1(Ω \Γ) of (6.10) satisfies w∞ = 0. The Rellich Lemma then implies
that w vanishes in Rd \ Ω. Consequently, we deduce from (6.10) that w satisfies

∆w + k2w = 0 in Ω \ Γ
Bw = 0 on ∂Ω

σ(w) = 0 on Γ ∩ Ω.
(6.15)

Definition 6.3.1. k > 0 is a Relative Transmission Eigenvalue (RTE) if there exists a non
trivial solution w ∈ H1(Ω \ Γ) to (6.15).
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We make a first simple observation: if the chosen artificial background Ω is such that Ω∩Γ =
∅, then the relative transmission eigenvalues correspond to the spectrum of the following problem,

∆w + k2w = 0 in Ω
Bw = 0 on ∂Ω

(6.16)

which can be computed independently from the data (we recall that Ω is chosen independently
from Γ). It will be shown in the next paragraph that the spectrum of (6.15) can be computed
from far field data. Consequently it is possible to determine whether Ω ∩ Γ is empty or not
by comparing the computed spectrum of (6.15) with the spectrum of (6.16). Furthermore, for
particular boundary values σ(w), we can be more precise: the values τ = k2 for which there
exists a non trivial solution to (6.15) are monotonous with respect to Γ ∩ Ω (for the inclusion
order). Such a result gives a justification of the quantification of the amount of cracks contained
in the localized area Ω. We now enumerate the different possibilities for the boundary operator
σ which fits to this framework and show the monotonous result for the eigenvalues in each case.
We also choose Bw = w|∂Ω in the study but one can easily adapt the results for the Neumann
boundary conditions.

Sound soft cracks

The variational formulation of the following problem: w ∈ H1(Ω \ Γ) such that for a given data
f ∈ L2(Ω)

∆w = f in Ω \ Γ
w = 0 on Γ
w = 0 on ∂Ω

(6.17)

is, w ∈ ED(Ω,Γ) := {u ∈ H1(Ω) | u = 0 on (Γ ∩ Ω) ∪ ∂Ω} such that

∀ϕ ∈ ED(Ω,Γ),

∫
Ω
∇w∇ϕdx =

∫
Ω
fϕdx. (6.18)

Consequently if σ(w) = w on Γ, the spectrum of (6.15) is made of positive reals 0 < τD0 (Ω,Γ) ≤
τD1 (Ω,Γ) ≤ · · · ≤ τDp (Ω,Γ) ≤ . . . that satisfy the following min max principle [92],

τDj (Ω,Γ) = min
W⊂UDj (Γ)

max
w∈W\{0}

∫
Ω
|∇w|2 dx∫

Ω
|w|2 dx

(6.19)

where UDj (Γ) denotes the sets of the j-dimensional subspaces of ED(Ω,Γ). Now consider two

sets of cracks Γ1 and Γ2 such that Ω∩Γ1 ⊂ Ω∩Γ2. Since UDj (Γ1) contains all the j-dimensional

subspaces of {w ∈ H1(Ω) | u = 0 on Γ2 ∩ Ω}, we deduce the following monotonicity result,

(Ω ∩ Γ1) ⊂ (Ω ∩ Γ2) =⇒ ∀j ∈ N, τDj (Ω,Γ1) ≤ τDj (Ω,Γ2). (6.20)

Sound hard cracks

Similarly, it can be shown that if σ(w) = 0 is replaced by the Neumann boundary conditions
∂±ν w = 0 on Γ, then the spectrum of (6.15) is made of positive reals 0 < τN0 (Ω,Γ) ≤ τN1 (Ω,Γ) ≤
· · · ≤ τNp (Ω,Γ) ≤ . . . that satisfy the following min max principle,
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τNj (Ω,Γ) = min
W⊂UNj (Γ)

max
w∈W\{0}

∫
Ω
|∇w|2 dx∫

Ω
|w|2 dx

(6.21)

where UNj (Γ) denotes the set of the j-dimensional subspaces of EN (Ω,Γ) := {u ∈ H1(Ω\Γ) |u =

0 on ∂Ω}. Now consider two sets of cracks Γ1 and Γ2 such that Ω∩ Γ1 ⊂ Ω∩ Γ2. Since UNj (Γ2)

contains all the j-dimensional subspaces of EN (Ω,Γ1), we deduce the following monotonicity
result,

(Ω ∩ Γ1) ⊂ (Ω ∩ Γ2) =⇒ ∀j ∈ N, τNj (Ω,Γ1) ≥ τNj (Ω,Γ2). (6.22)

Impedance boundary conditions

We consider the following impedance boundary conditions on the crack, σ(w) = ∂±ν w∓λ±w± on
Γ where λ± are non negative functions. We define the two following operators A, B on EN (Ω,Γ)
by the use of the Riesz representation theorem:

〈Aφ, ψ〉 =

∫
Ω
∇φ∇ψ dx+

∫
Γ
(λ+φ+ψ+ + λ−φ−ψ−) ds(x) + τ0

∫
Ω
φψ dx (6.23)

and

〈Bφ, ψ〉 =

∫
Ω
φψ dx (6.24)

for all φ, ψ ∈ EN (Ω,Γ). The τ0 has to be chosen so that the A is coercive. With these notations,
τ is in the spectrum of (6.15) if and only if there exists a non trivial element w ∈ EN (Ω,Γ) such
that Aw = (τ + τ0)Bw. Consequently, the spectrum of (6.15) is made of reals −τ0 ≤ τ I0 (Ω,Γ) ≤
τ I1 (Ω,Γ) ≤ · · · ≤ τ Ip (Ω,Γ) ≤ . . . which again satisfy the min max principle [29, Theorem 4.3]

τ Ij (Ω,Γ) + τ0 = min
W⊂UNj (Γ)

max
w∈W\{0}

〈Aw,w〉
〈Bw,w〉

. (6.25)

Hence we obtain the same result as for the case of sound hard cracks, that is for two given sets
of cracks Γ1 and Γ2 we have

(Ω ∩ Γ1) ⊂ (Ω ∩ Γ2) =⇒ ∀j ∈ N τ Ij (Ω,Γ1) ≥ τ Ij (Ω,Γ2). (6.26)

6.3.3 Computation of the relative transmission eigenvalues from the data

In this section we show that the RTEs can be computed from the data. The method we use
is similar to the one used for the characterization of classical transmission eigenvalues from the
failure of the Linear Sampling Method for particular wavenumbers k [28]. In our case, it relies
on the fact that when k is a RTE, the approximate solution of the far field equation

F relg = Φ∞z (6.27)

cannot be associated with Herglotz waves with finite norm for z in a subset U ⊂ Ω of non empty
interior, where Φ∞z is the far field of Φ(z, ·), the outgoing solution of the equation

∆Φ(z, ·) + k2Φ(z, ·) = −δz. (6.28)
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We also add to our method the same improvement provided by the Generalized Linear Sampling
Method [?]. Instead of approximating the solution of (6.27) by the Tikonov regularization, we
rather use a penalization which controls the quantity ‖Hrelg‖, which blows up when k is a RTE.
We begin with the simple but fundamental following result.

Lemma 6.3.2. Assume that k is not a RTE. Then Φ∞z ∈ R(Grel) if and only if z ∈ Ω.

Proof. Assume that k is not a RTE and let z ∈ Ω. The assumption on k implies that the
following problem of seeking w ∈ H1(Ω \ Γ) for given f ∈ H

1
2 (∂Ω) such that

∆w + k2w = 0 in Ω \ Γ
σ(w) = 0 on Γ ∩ Ω
Bw = f on ∂Ω.

(6.29)

is well posed. Let wint be the solution of this problem with f = BΦz |∂Ω. We define w ∈
H1
loc(Rd \Ω)×H1(Ω \ Γ) with w = wint in Ω and w = Φz in Rd \ {Ω∪ Γ}. Then w is a solution

to (6.10) with ψ1 = B∗(Φz − wint) and ψ2 = σ(Φz).
Now let z ∈ Rd \ Ω. Assume that there exists (ψ1, ψ2) ∈ X∗(∂Ω) × Y (Γ ∩ Ωc) such that

G(ψ1, ψ2) = Φ∞z . By the Rellich’s Lemma we deduce that w = Φz, where w is the solution to
(6.10). This gives a contradiction since w ∈ H1

loc(Rd \ Ω) whereas Φz /∈ H1
loc(Rd \ Ω) because of

its singularity at z.

In the following lemma we show the possibility to define a penalization term P from the data
which controls both ‖H∂Ωg‖ and ‖ΨΓg‖. (We recall that ‖ · ‖ denotes the norm in the arrival
space of each mapping).

Lemma 6.3.3. Assume that k is not an eigenvalue of (6.16). For g ∈ L2(Sd−1) define

P (g) := 〈F ]g, g〉+ 〈F̃ g, g〉 (6.30)

where F ] = |<eF |+=mF and F̃ ] = |<eF̃ |+=mF̃ . Then there exists a constant C > 0 such that

∀g ∈ L2(Sd−1), P (g) ≥ C‖Hrelg‖2X∗(∂Ω)×Y (Γ∩Ωc) (6.31)

Proof. We introduce the following operators

Sk : H−
1
2 (Γ) −→ H

1
2 (Γ)

ϕ 7−→
∫

Γ Φ(x, y)ϕ(y)ds(y)
and

Nk : H
1
2 (Γ) −→ H−

1
2 (Γ)

ϕ 7−→ ∂ν
∫
ϕ(y)∂νΦ(x, y)ds(y).

All the properties of F̃ , Sk and Nk used in the following can be found in [83, Theorems 1.15 &
1.26 and Lemma 1.14]. The operator F̃ satisfies a first factorization of the form

F̃ = H?
∂ΩT̃1H∂Ω (6.32)

where T̃1 = −S?k in case of the Dirichlet boundary condition for B and T̃1 = −N?
k in the case

of the Neumann boundary condition for B. The coercivity property of S?i and N?
i and the

compactness of S?k − S?i and N?
k −N?

i implies that

F̃ ] = H?
∂ΩT̃

]
1H∂Ω (6.33)

where T̃ ]1 is coercive provided that k is not an eigenvalue of (6.16). Therefore

∀g ∈ L2(Sd−1), 〈F̃ ]g, g〉 = 〈T̃ ]1H∂Ωg,H∂Ωg〉 ≥ c‖H∂Ωg‖2X∗(∂Ω). (6.34)
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This shows that P (g) controls ‖H∂Ωg‖2X∗(∂Ω). We now show that it also controls ‖ΨΓg‖ =

‖σ(ũs + vg)‖ where ũs is the solution of (6.7) with ui = vg. It can be shown that F̃ satisfies a
second factorization in the form

F̃ = H?T̃2H (6.35)

where H : g 7→ Bvg and T̃2 satisfies properties similar as T̃1. Therefore,

〈F̃ ]g, g〉 = 〈T̃ ]2Hg,Hg〉 ≥ c‖Bvg‖
2
X(∂Ω). (6.36)

It is known that problem (6.7) is well posed and that all the derivatives of the solution on
bounded subsets of Rd \ Ω depends continuously on the boundary data Bvg |∂Ω [44, Theorems

3.11 & 3.12]. Consequently (6.36) implies

〈F̃ ]g, g〉 ≥ ‖σ(ũs)‖2Y (Γ∩Ωc). (6.37)

It remains to control σ(vg) on Γ ∩ Ωc, the latter is ensured by the properties of F ] that can be
found in the literature. For instance in the case of impedance boundary condition on the cracks,
it is shown in [18] that F ] satisfies the following factorization

F ] = H?
ΓT

]HΓ (6.38)

where HΓ : g 7→ σ(vg) and T ] also satisfies a coercivity property similar to T̃ ]1 . Consequently

〈F ]g, g〉 = 〈T ]HΓg,HΓg〉 ≥ c‖σ(vg)‖2. (6.39)

Finally by using estimates (6.34),(6.37) and (6.39) we conclude that

∃C > 0, ∀g ∈ L2(Sd−1), P (g) ≥ C
(
‖B∗(vg + ũs)‖2X∗(∂Ω) + ‖σ(vg + ũs)‖2Y (Γ∩Ωc)

)
. (6.40)

We now have all the ingredients to show that RTEs can be determined from the data. Define

Jαz (g) := αP (g) + ‖F relg − Φ∞z ‖2L2(S2). (6.41)

We denote by jαz the infimum of Jαz :

jαz = inf
g∈L2(Sd−1)

Jα(g) (6.42)

and define a sequence gαz ∈ L2(S2) such that

Jαz (gαz ) ≤ jαz + Cαη, η > 2. (6.43)

Roughly speaking, the quantity lim
α→0

P (gαz ) is shown to blow up only when k is a RTE. We

proceed in two steps and begin with the following result,

Theorem 6.3.4. Assume that k is not a RTE. Then ∀z ∈ Ω, lim sup
α→0

P (gαz ) < +∞.
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Proof. Let z ∈ Ω. From the definition of Jαz , g
α
z and jαz , there holds

αP (gαz ) ≤ Jα(gαz ) ≤ jαz + Cαη. (6.44)

According to Lemma 6.3.2, there exists ϕz = (ϕz1, ϕ
z
2) ∈ X∗(∂Ω) × Y (Γ ∩ Ωc) such that

Grel(ϕz1, ϕ
z
2) = Φ∞z . Let g0 ∈ L2(Sd−1) be such that ‖Hrelg0 − ϕz‖ < α. Estimate (6.44)

gives

αP (gαz ) ≤ αP (g0) + ‖GrelHrelg0 − Φ∞z ‖+ Cαη. (6.45)

The continuity of Grel then implies,

αP (gαz ) ≤ αP (g0) + ‖Grel‖‖Hrelg0 − ϕz‖+ Cαη

≤ αP (g0) + α‖Grel‖+ Cαη.
(6.46)

Hence lim sup
α→0

P (gαz ) < +∞.

The final step allowing one to compute RTEs is the following result complementary to the
previous one.

Theorem 6.3.5. Assume that k is a RTE. Assume furthermore that k2 is not an eigenvalue of
(6.16) and that F rel has dense range. Then for all subdomain A ⊂ Ω such that (Γ∩Ω) ⊂ A, the
function z 7→ lim inf

α→0
P (gαz ) does not belong to L∞(Ω \A).

Proof. We proceed by using a contradiction argument. Assume that

∃M > 0 such that lim inf
α→0

P (gαz ) ≤M for a.e z ∈ Ω \A. (6.47)

Let z ∈ Ω \ A. The result of Lemma 6.3.3 (which requires that k2 is not an eigenvalue of
(6.16)) implies the existence of a subsequence ψnz := Hrelgαnz such that ψnz converges weakly to
a limit denoted ψz ∈ X∗(∂Ω)× Y (Γ ∩Ω). Furthermore the assumption on the denseness of the
range of F rel implies that F relgαz → Φ∞z when α→ 0. Then the compactness of Grel implies that
Grelψz = Φ∞z . Now by definition ofGrel, there exists a solution wz ∈ H1

loc(Rd\{Ω∪Γ})×H1(Ω\Γ)
of (6.10) such that w∞z = Φ∞z . The Rellich’s Lemma implies that wz satisfies the following
equations,

∆wz + k2wz = 0 in Ω \ Γ
σ(wz) = 0 on Γ ∩ Ω
Bwz = BΦz on ∂Ω.

(6.48)

We have shown the existence of a solution wz ∈ H1(Ω \ Γ) for all z ∈ Ω \ A to equation (6.48).
We now show that this is not compatible with the fact that k is a RTE. Indeed let w0 be an
eigenfunction of (6.15). Then multiplying the first equation of (6.48) with w0 and using Green’s
second formula gives

0 =

∫
∂Ω

(∂νw0wz − w0∂νwz) ds(x)

+

∫
Γ∩Ω

(
∂−ν w

−
0 w
−
z − w−0 ∂

−
ν wz

)
ds(x)−

∫
Γ∩Ω

(
∂+
ν w0w

+
z − w+

0 ∂
+
ν wz

)
ds(x).

(6.49)

Since σ(w0) = σ(wz) = 0 on Γ, the sum on Γ in the above equation is zero whatever the choice
for σ (Dirichlet, Neumann or impedance boundary condition). Consequently, since Bw0 = 0 and
Bwz = BΦz on ∂Ω, we have shown
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∀z ∈ Ω \A,
∫
∂Ω

(∂νw0Φz − w0∂νΦz) ds(x) = 0. (6.50)

The Green’s representation theorem together with this last equation imply that

∀z ∈ Ω \A, w0(z) =

∫
Γ∩Ω

[w0]∂νΦz ds(x)−
∫

Γ∩Ω
[∂νw0]Φz ds(x). (6.51)

The function w̃0(z) ∈ H1
loc(Rd \A) defined by

w̃0(z) :=

∫
Γ∩Ω

[w0]∂νΦz ds(x)−
∫

Γ∩Ω
[∂νw0]Φz ds(x) (6.52)

is an outgoing solution to Helmholtz equation and coincides with w0 on Ω \A. We observe from
(6.51) that Bw̃0 = Bw = 0 on ∂Ω, consequently w̃0 = 0 on Rd \Ω [29, corollary 1.3]. The unique
continuation principle then implies that w̃0 = 0 on Ω \A. This implies that w0 = 0 which gives
a contradiction to (6.47).

Remark 6.3.6. Theorems 6.3.4 and 6.3.5 suggest that RTEs corresponds to values of k for
which peaks are observed in the curve

f : k 7→
∫

Ω\A
P (gαz ) dz (6.53)

for small values of α and any subdomain A of Ω - but only provided that k2 is not simultaneously
an eigenvalue of (6.16). However, as it will be mentioned in the numerical algorithm, this latter
restriction can be easily removed.

6.3.4 Description of the inversion algorithm

Crack detection in a localized area

Let (F (k))k∈[km,kM ] be the far field operators for wavenumbers k ∈ [km, kM ] associated to a
material made of cracks embedded in an homogeneous background. A first idea of using RTE
to perform crack monitoring is to determine from the data (F (k))k∈[km,kM ] if there are cracks

in a neighborhood of a point t ∈ Rd. Set Ω := B(t, r) where r > 0 is somehow related to the
resolution of the method. The procedure we shall describe is simple and requires to consider
only the first RTE τ0(Ω,Γ). We first compute the relative far field operators (F rel(k))k∈[km,kM ]

with formula (6.8), then for all k ∈ [km, kM ] approximate the far field equation F rel(k)g = Φ∞z
by computing gαz (k) which is given by (6.43) for small values of α. Then compute τ0(Ω,Γ) = k2

which corresponds to the first peak in the curve

EΩ 7→
∫

Ω\A
P (gαz (k)) dz. (6.54)

Let τ0(Ω, ∅) be the first eigenvalue of (6.16) that can be computed independently from the data
(F (k))k∈[km,kM ]. Since τ0(Ω,Γ) is a perturbation of τ0(Ω, ∅), we precise at this point that km
and kM should be chosen such that τ0(Ω, ∅) ⊂ [km, kM ]. We then have the following result,

|τ0(Ω,Γ)− τ0(Ω, ∅)| 6= 0 =⇒ Γ ∩ Ω 6= ∅. (6.55)

This result is not satisfactory since it may be possible to have Γ∩Ω 6= ∅ and τ0(Ω,Γ) = τ0(Ω, ∅),
in which case the possbility to compute τ0(Ω,Γ) is not even covered by the theory (see Remark
6.3.6). We propose a solution to overcome this issue as follows.
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The crack location can be identified by repeating the previous procedure for many artificial
backgrounds which scans an a priori known location of the crack U ⊂ Rd. Define the collection
of artificial backgrounds (Ωt)t∈U = (B(t, r))t∈U and denote with τ0(Ωt,Γ) the computed first
RTE associated to each Ωt. We observe that

|τ0(Ωt,Γ)− τ0(Ω0, ∅)| 6= 0 =⇒ Γ ∩ Ωt 6= ∅. (6.56)

Then defining the following indicator function,

I(t) =

∫
B(t,r)

|τ0(Ωx,Γ)− τ0(Ω0, ∅)|dx, (6.57)

we expect the existence of x ∈ B(t, r) such that τ0(Ωx,Γ) 6= τ0(Ω0, ∅) which implies the equiva-
lence IΓ(t) = 0 ⇐⇒ Γ ∩ Ωt = ∅. A rigorous proof of this statement is under study.

Crack densities

It has been shown in section 6.3.2 that if we have an a priori information of the boundary
condition σ (Dirichlet, Neumann or impedance), then for a fixed artificial background Ω, the
quantity τ0(Ω,Γ) is monotonous with respect to Γ∩Ω for the inclusion order. Consequently, for
fixed t, the function

Γ ∩ Ωt 7→ IΓ(t) (6.58)

is a monotonous function for the inclusion order. Although it is not true, we extrapolate this
result and assume the following:

the quantity IΓ(t) depends only on |Γ ∩ Ωt|,
furthermore the function |Γ ∩ Ωt| 7→ IΓ(t) is monotonous.

Under this assumption, we expect that if IΓ(t1) ≤ IΓ(t2) for t1, t2 ∈ Rd, then |Γ∩Ωt1 | ≤ |Γ∩Ωt2 |.
In other words, the indicator function IΓ(t) does not only give information on the position of the
crack but also a qualitative information on |Γ ∩ Ωt|. In the next section we test this indicator
function in a two dimensional setting for sound hard cracks.

6.3.5 Numerical validation of the algorithm

Data generation and computation of the relative far field operator

We conclude this section by applying the indicator function (6.57) to simulated backgrounds
made of sound hard crack networks. For a given wavenumber k, a discretization of the far field
operator F is generated by solving numerically the direct problem (6.2) for multiple incident
fields ui(θp, x) = e−ikx·θp . Then we compute the matrix F = (u∞s (θp, x̂q))p,q for θp, x̂q in
{cos( 2lπ

100), sin( 2lπ
100), l = 1..100} (somehow we discretize L2(S1)). We then add random noise to

the simulated F and obtain a noisy far field data F δ defined by F δpq = Fpq(1 + ηN). Here N
is a complex random variable whose real and imaginary parts are uniformly chosen in [−1, 1]2.
The parameter η > 0 is chosen so that ‖F δ − F‖ ≤ δ. We repeat this process for multiple
wavenumbers k ∈ [km, kM ] to obtain a collection of noisy far field data (F δ(k))k∈[km,kM ].

We have chosen the ball for the geometry of the artificial obstacles Ωt = B(t, r) because
it is the only geometry for which an analytic expression of the far field pattern associated to
problem (6.7) is known. As described next, this considerably accelerates the computation of the
relative far field operators F relt (k) associated to the background Ωt from the given data F (k).
Furthermore we have chosen to prescribe the Dirichlet boundary conditions Bw = w|∂Ωt on the
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boundary of the artificial backgrounds. Consequently km ad kM have been chosen such that
[km, kM ] contains the first Dirichlet eigenvalue of B(0, r). Now let ui(θ, x) = eikx·θ and consider
the solution ũs(·, θ, k, t) of (6.7) with Ω = Ωt. Firstly for t = 0, the scattered field ũs(θ, k, t) can
be easily expressed as a sum of Hankel functions. Then it can be shown by using the asymptotic
behavior of the Hankel functions that

ũ∞s (θ, x̂, k, t = 0R2) = e−
iπ
4

√
2

πk

∑
m∈Z
− Jm(kr)

Hm(kr)
eim(x̂−θ). (6.59)

From the translation formula [44, equation 5.3], the solution of (6.7) where Ω is replaced by Ωt,
has the following far field pattern,

ũ∞s (θ, x̂, k, t) = eikt·(θ−x̂)ũ∞s (θ, x̂, 0R2). (6.60)

Consequently if we define the two matrix T (k) and F̃ (k) by

Tp,q(k) = eikt·(θp−x̂q) and F̃p,q(k) = ũ∞s (θp, x̂q, 0R2). (6.61)

Then the relative far field operators F relt (k) are given by

F relt (k) = F δ(k)− F̃t(k). (6.62)

where F̃t(k) is the component wise multiplication of T (k) with F̃ (k).

Regularization of Jαz

To handle the noise δ added on the data, we use a regularized version of the cost function Jαz
defined by (6.41). It consists in finding the minimizer gα,δz (k, t) of the functional

Jα,δz (g, k, t) = α
(
P δ(g, k, t) + δ‖g‖2L2(S2)

)
+ ‖F relt (k)g − Φ∞z ‖2L2(Sd−1), (6.63)

where P δ(g, k, t) = 〈F δ] (k)g, g〉+ 〈F̃ ]t g, g〉. Following [10, Section 5.2], we fit α to δ as follows,

α(δ, t, k) =
αLSM (t, k)

‖F δ] (k)‖+ ‖F̃ ]t (k)‖+ δ
(6.64)

where αLSM (k, t) is the regularization parameter given by the Morozov discrepancy principle in
the Tikonov regularization of the equation F relt (k)g = Φ∞z .

Indicator of the crack density

From the computed gα,δz (k, t), we compute the RTEs τ0(Γ,Ωt) as described in the previous
section.

We first illustrate the indicator function I(t) on a neat example (figure 6.2). We also presented
the plot of the curve EΩ defined by (6.54) for two different artificial disks Ωt1 (figure 6.3) and
Ωt2 (figure 6.4) so one can appreciate how the first eigenvalue of (6.15), determined by the first
peak of the curve Et, deviates from the first eigenvalue of (6.16) when Ωt intersects the crack.
In figure 6.5, we decreased the artificial disks radii to r = 0.1 to recover the crack with a better
resolution.

Finally, we implement the method to less academical situations in figure 6.6. It gives quite
good results in the sense that it allows to identify highly damaged areas. However, this method
is quite expensive in computations to allow a better resolution of the image. This is why we
propose another approach in the next section, which requires only measurements at one fixed
frequency and whose implementation is less costly.
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Figure 6.2: Left: collection of artificial disks of radii r = 0.3 used to identify a single crack of length
0.5. Right: results of the reconstruction provided by the indicator I.
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Figure 6.3: Plot of the curve Et1 (left) defined by (6.54) computed with the artificial background Ωt1
represented on right. The peak of the curve is reached at k∗ ≈

√
τ0(Ω0, ∅), the latter quantity being

indicated by a vertical bar. Consequently, it is obtained that I(t1) = |τ0(Ω0, ∅)− (k∗)2| ≈ 0.
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Figure 6.4: Plot of the curve Et2 (left) defined by (6.54) computed with the artificial background Ωt2
represented on right. The peak of the curve is reached at k∗ <

√
τ0(Ω0, ∅), the latter quantity being

indicated by a vertical bar. Consequently, it is obtained that I(t2) = |τ0(Ω0, ∅)− (k∗)2| � 0.
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Figure 6.5: Results of the reconstruction provided by the indicator I to recover a single crack. The
method is carried with artificial disks of radii r = 0.1.
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Figure 6.6: Use of the indicator I to image simulated damaged backgrounds. Left: 11 vertical cracks
of length 0.25 arranged in 4 damaged areas with different degrees of damage, the radius of the artificial
backgrounds is r = 0.25. Right: 40 cracks of different lengths arranged randomly, the radius of the
artificial backgrounds is r = 0.1. The data is corrupted with 1% of noise.

6.4 An alternative method using measurements at one fixed fre-
quency

In this section we try to define an indicator function which would allow to quantify small crack
aggregates similarly to I(t) but which requires only far field measurements at one fixed frequency.
The method we propose is inspired by the Differential Linear Sampling Method [9], but we precise
that we do not require differential measurements. In fact, the idea of our method is that for
a given far field operator F , we compare the two solutions of the transmission problem (6.15)
which arises for two different artificial backgrounds Ω1 6= Ω2, with Ω1 disjoint from the crack
and Ω2 intersecting the crack. The new proposed indicator allows us to isolate the crack but
there is no theoretical justification for the quantification of crack networks. However numerical
simulations show that it gives good results for this perspective.

6.4.1 Solution of the far field equation

In this section we give a characterization of the solution to equation Grelψz = Φ∞z . It will be
shown that when k is not a RTE, the solution can be approximated by optimizing the cost
functional (6.41) for small values of α. Let w be a solution of (6.10) such that w∞ = Φ∞z .
Rellich’s lemma implies that w = Φz on Rd \ (Ω∪Γ). Consequently ψ2 = −σ(Φz) on Γ∩Ωc and
ψ1 = B∗(wi − Φz) where wi is given by the solution of

∆wi + k2wi = 0 in Ω \ Γ
σ(wi) = 0 on Γ ∩ Ω
Bwi = BΦz on ∂Ω.

(6.65)

Theorem 6.4.1. Assume that F rel has dense range and that k is such that (6.15) and (6.16)
are well posed. Then ∀z ∈ Ω, there exists a unique solution (ψ1, ψ2) ∈ X∗(∂Ω) × Y (Γ ∩ Ωc)
to equation Grel(ψ1, ψ2) = Φ∞z . Furthermore the sequence gαz defined by (6.43) is such that
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the sequence H∂Ωg
α
z converges strongly to ψ1 = B∗(wi − Φz) where wi is the unique solution of

(6.65).

Proof. Uniqueness of the solution to equation G(ψ1, ψ2) = Φ∞z comes from the well posedeness
of (6.15) and the characterization ψ1 = B∗(wi−Φz) has been established in the above discussion.
We now show that H∂Ωg

α
z converges to ψ1. According to Theorem 6.3.4, the sequence (P (gαz ))α>0

is bounded and Lemma 6.3.3 then implies that the sequence Hrelgαz is bounded. Up to extracting
subsequences, we assume that Hrelgαz converges weakly.

On the one hand, the compactness of Grel implies that GrelHrelgαz converges strongly to Φ∞z
in L2(Sd−1) when α → 0. On the other hand, since F rel has dense range, we also have that
F relgαz → Φ∞z when α → 0. Then the injectivity of Grel implies that the only possible weak
limit for Hrelgαz is (ψ1, ψ2). We now show the strong convergence of H∂Ωg

α
z to ψ1. Firstly, from

the definition of jαz ,

jαz ≤ inf
(h1,h2)∈R(Hrel)

α〈T̃ ]1h1, h1〉+ α〈T ]h2, h2〉+ ‖Gm(h1, h2)− Φ∞z ‖2 (6.66)

where T̃ ]1 and T ] appears in factorizations (6.33) and (6.38) then choosing (h1, h2) = (ψ1, ψ2) in
the above estimation gives

jαz ≤ α〈T̃
]
1ψ1, ψ1〉+ α〈T ]ψ2, ψ2〉. (6.67)

Finally from the definition of gαz (6.43),

lim sup
α→0

(
〈T̃ ]1H∂Ωg

α
z , H∂Ωg

α
z 〉+ 〈T ]HΓg

α
z , HΓg

α
z 〉
)
≤ 〈T̃ ]1ψ1, ψ1〉+ 〈T ]ψ2, ψ2〉. (6.68)

Thanks to the coercivity properties of T̃ ]1 , we can write

c1‖H∂Ωg
α
z − ψ1‖2 ≤ 〈T̃ ]1(H∂Ωg

α
z − ψz1), H∂Ωg

α
z − ψ1〉

≤ 〈T̃ ]1H∂Ωg
α
z , H∂Ωg

α
z 〉 − 〈T̃

]
1H∂Ωg

α
z , ψ1〉 − 〈ψ1, H∂Ωg

α
z − ψ1〉,

(6.69)

and similarly,

c2‖HΓg
α
z − ψ2‖2 ≤ 〈T ]HΓg

α
z , HΓg

α
z 〉 − 〈T ]HΓg

α
z , ψ2〉 − 〈ψ2, HΓg

α
z − ψ2〉. (6.70)

By adding (6.69), (6.70) together and using (6.68) we obtain

lim
α→0

c1‖H∂Ωg
α
z − ψ1‖2 + c2‖HΓg

α
z − ψ2‖2 = 0, (6.71)

and hence lim
α→0

H∂Ωg
α
z = ψ1.

6.4.2 Comparison of two transmission problems revealing the presence of
cracks

We consider the following boundary value problems,

Pz: find w ∈ H1(Ω) such that

∆w + k2w = 0 in Ω

Bw = BΦz on ∂Ω

Pz
Γ: find wΓ ∈ H1(Ω \ Γ) such that

∆wΓ + k2wΓ = 0 in Ω \ Γ

σ(wΓ) = 0 on Γ ∩ Ω

BwΓ = BΦz on ∂Ω.

(6.72)
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Of course if Γ∩Ω = ∅ the two problems above are the same. Moreover we have the following
result,

Lemma 6.4.2. Assume that k2 is not an eigenvalue of problem (6.16) and let wz, wzΓ be the
solutions of (P) and (PΓ) respectively. Then we have

1. ∀z ∈ Ω, the functions =m(wz) and =m(Φz) coincide on Ω.

2. If Γ∩Ω 6= ∅, the set of z ∈ Ω such that the functions =m(B∗wzΓ) and =m(B∗Φz) of X∗(∂Ω)
coincide is of empty interior.

Proof. We begin with the first point. The fundamental solution of Helmholtz equation is given
by the following formulas,

Φz(x) =
i

4
(J0(k|x− z|) + iY0(k|x− z|)) if d = 2 and Φz(x) =

1

4π

eik|x−z|

|x− z|
if d = 3 (6.73)

where J0 and Y0 are respectively the Bessel functions of order zero of first kind and of second
kind. We have that =m(Φz) ∈ H1(Ω) thanks to the smoothness of J0 for d = 2 and the
smoothness of x 7→ sin(x)/x for d = 3. As a consequence, the unique solution of the following
problem

∆w + k2w = 0 in Ω

Bw = =m(BΦz) on ∂Ω
(6.74)

is given by =m(Φz). We observe that =m(wz) is also a solution of (6.74), hence =m(wz) =
=m(Φz) on Ω.

We prove the second point by using a contradiction argument. Assume that there exists a
subset U ⊂ Ω of non empty interior such that the functions =m(B∗wzΓ) and =m(B∗Φz) coincide.
Since =m(wz) and =m(Φz) satisfy the same Cauchy conditions on ∂Ω we first deduce that they
coincide on Ω \ Γ. Therefore we have shown that

∀z ∈ U, σ(=m(Φz)) = 0 on Γ. (6.75)

We now show that the above result leads to a contradiction. For two given real valued functions
α, β ∈ L2(Ω), we define the following function defined on Ω \ Γ,

f(z) =

∫
Γ
α(x)Φ(x, z) ds(x) +

∫
Γ
β(x)∂ν(x)Φ(x, z) ds(x). (6.76)

The function f satisfies the Helmholtz equation on Rd\Γ and the Sommerfeld radiation condition.
We first treat the case when σ corresponds to the Dirichlet boundary conditions on Γ. We set
β = 0 and choose for α any nonzero (real valued) element of L2(Γ). Assumption (6.75) first
implies =m(f) = 0 in U . Then the unique continuation principle implies that =m(f) vanishes
in Rd. Furthermore a real valued solution of Helmholtz equation which satisfies the Sommerfeld
radiation condition is necessarily zero. Hence f = 0 in Rd. The latter contradicts the jump
properties of the single layer potential which states that [∂νf ] = α on Γ. The cases of the
Neumann and impedance boundary conditions for σ are treated similarly. For the Neumann
boundary conditions, set α = 0 and choose for β any nonzero (real valued) function of L2(Γ).
For the impedance condition λΦz + ∂νΦz = 0, set α = λ and β = 1.

Theorem 6.4.3. Assume that k2 is not an eigenvalue of problem (6.15) nor an eigenvalue of
problem (6.16). For z ∈ Ω, let gαz be the sequence defined by (6.43). Then we have the two
following characterizations of Γ ∩ Ω = ∅,
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1. Γ ∩ Ω = ∅ iff ‖ lim
α→0

(H∂Ωg
α
z )− B∗(wz − Φz)‖X∗(∂Ω) = 0 for a.e z in Ω.

2. Γ ∩ Ω = ∅ iff ‖=m( lim
α→0

H∂Ωg
α
z )‖X∗(∂Ω) = 0 for a.e z in Ω.

where wz is the solution of Pz (6.72).

Proof. We denote by wzΓ the solution of Pz
Γ (6.72) (where Γ∩Ω is eventually empty) and by wz

the solution of Pz (6.72). Theorem 6.4.1 implies that

lim
α→0

H∂Ωg
α
z = B∗(wzΓ − Φz). (6.77)

It suffices to observe that

‖ lim
α→0

(H∂Ωg
α
z )− B∗(wz − Φz)‖X∗(∂Ω) = ‖B∗(wzΓ − wz)‖X∗(∂Ω). (6.78)

and

‖=m( lim
α→0

H∂Ωg
α
z )‖X∗(∂Ω) = ‖=m(B∗wzΓ − B∗Φz)‖X∗(∂Ω). (6.79)

The two results of the theorem are then a direct consequence of Lemma 6.4.2.

Note that the quantity wz and the operator H∂Ω can be computed numerically independently
from the data. Similarly to the previous section, we propose to detect the position of the crack
by considering a collection of artificial backgrounds Ωt = B(t, r). Then Γ ∩ Ωt is identified by
comparing the solutions of P(Ωt) and PΓ(Ωt). Therefore, in view of Theorem 6.4.3 we define
the following indicator functions,

Jα1 (t) =

∫
A⊂Ωt

‖H∂Ωtg
α
z (t)− B∗(wz(t)− Φz)‖X∗(∂Ωt) dz (6.80)

and

Jα2 (t) =

∫
A⊂Ωt

‖=m(H∂Ωtg
α
z (t))‖X∗(∂Ωt) dz. (6.81)

We then have for i = 1, 2

∀t ∈ Rd, Γ ∩ Ωt = ∅ iff lim
α→0

Jαi (t) = 0. (6.82)

The indicators Jαi can then be used to identify the crack location.

Remark 6.4.4. We point out here that the indicator Jα2 is weaker than Jα1 . Indeed, for z ∈ Ω,
=mwz = =mΦz on Ω. Consequently,

∀z ∈ Ω, =m(H∂Ωg
α
z − ∂+

ν (wz − Φz)) = =m(H∂Ωg
α
z ) on ∂Ω.

From the definitions of Jα1 and Jα2 , we deduce

∀t ∈ Rd, Jα2 (t) ≤ Jα1 (t).
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Figure 6.7: Reconstruction of a single crack with the indicator J1 from given far field data generated
at frequency k = 15. The resolution of the image is set by the radii of the used artificial disks: r = 0.3
(left), r = 0.1 (middle), r = 0.01 (right). The data is corrupted with 1% of noise.

6.4.3 Numerical results and comparison with the multiple frequencies ap-
proach

Similarly to what has been done in the previous section, we generate the far field data from
a simulated background, but this time only data for a single wave number k is required. We
prescribe on the artificial backgrounds Ωt = B(t, r) the Dirichlet boundary conditions Bw =
w|∂Ωt . Once again the choice for k depends on the desired resolution r. Since k2 must be
different from the eigenvalues of (6.15) and (6.16), it suffices to take k2 smaller than the first
Laplace Dirichlet eigenvalue for B(0, r). For the chosen k, the matrix F δ(k) and F relt (k) are
then defined similarly to the previous section by (6.62). For a sample of t ∈ Rd we then compute
gαz (t) by solving the regularized version of the far field equation (6.63).

Again, we begin with the neat example of the single crack. In figure 6.7, the crack is
recovered with different resolutions using the indicator J1(t). Then we take advantage of this
simple example to highlight the behavior of the indicator J1(t) in figures 6.8-6.9. In figure 6.8
is provided the plots of the quantities H∂Ωtg

α
z and ∂ν(wz −Φz) for a particular z ∈ Ωt when Ωt

does not intersect the crack. We provide the plots of the same quantities when Ωt intersects the
crack in figure 6.9.

Since the implementation of this present method is quite fast, we have been able to image
the backgrounds treated in figure 6.6 with a higher resolution. The results are given in figures
6.10-6.11 where we also provided the result obtained with the indicator J2. In figure 6.11, it can
be observed that the indicator J1 offers a better contrast than J2. This behavior is explained in
remark 6.4.4.

Finally in figures 6.12-6.15, we compared the three different indicators I, J1 and the Factor-
ization Method (FM) to increasingly damaged materials. In these last examples, the data used
to compute the indicators J1 and FM were generated at the same wavelength λ = 0.15. The
distance dz between sampling points when computing the FM indicator is equal to the radii of
the artificial disks used for the indicator J1: r = dz = 0.01. For the indicator I, we used data
generated for a sample of wavelengths between λmin = 0.15 and λmax = 0.42. For this indicator,
the radii of the artificial backgrounds are set to r′ = 0.1. With this setting, k = 2π/λ with
λ = 0.16 or λ = 0.26 correspond to the two first eigenvalues of problem (6.16).
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Figure 6.8: Consider the artificial background Ωt1 and the crack Γ (top left). Since Ωt1 does not intersect
Γ, for any z ∈ Ωt1 , the quantities H∂Ωt1

gαz and ∂ν(wz −Φz) are expected to be close in H−1/2(∂Ω). The
real part and the imaginary part of the two latter quantities for a particular z ∈ Ωt1 are respectively
plotted on the top right graph and the bottom graph.
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Figure 6.9: Consider the artificial background Ωt2 and the crack Γ (top left). Since Ωt2 intersects Γ,
for any z ∈ Ωt1 , the quantities H∂Ωt1

gαz and ∂ν(wz − Φz) are expected to be different in H−1/2(∂Ω) in
general. The real part and the imaginary part of the two latter quantities for a particular z ∈ Ωt2 are
respectively plotted on the top right graph and the bottom graph.
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Figure 6.10: Use of the indicators J1 (left) and J2 (right) to image a simulated damaged background
made of 11 vertical cracks of length 0.25 arranged in 4 damaged areas with different degrees of damage.
The radius of the artificial backgrounds is r = 0.25. The radius of the artificial backgrounds is r = 0.1.
The data is corrupted with 1% of noise.
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Figure 6.11: Use of the indicators J1 (left) and J2 (right) to image a simulated damaged background
made of 40 cracks of different lengths arranged randomly. The radius of the artificial backgrounds is
r = 0.1. The data is corrupted with 1% of noise.
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Figure 6.12: Use of indicators I (top right), J1 (bottom right), and FM (bottom left) to recover a set
of 4 sound hard cracks. The data is corrupted with 1% of noise.
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Figure 6.13: Use of indicators I (top right), J1 (bottom right), and FM (bottom left) to recover a set
of 8 sound hard cracks. The data is corrupted with 1% of noise.
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Figure 6.14: Use of indicators I (top right), J1 (bottom right), and FM (bottom left) to recover a set
of 12 sound hard cracks. The data is corrupted with 1% of noise.
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Figure 6.15: Use of indicators I (top right), J1 (bottom right), and FM (bottom left) to recover a set
of 16 sound hard cracks. The data is corrupted with 1% of noise.
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Conclusion

In this chapter, we synthesize the results obtained during the thesis. In doing so, we will also
mention the main difficulties that have not been solved and suggest, when available, solutions
that might be addressed. Finally, we enumerate some possible perspectives.

In chapter 1, we illustrated the LSM, FM and the GLSM in a simple case where the obstacle
is a circular inhomogeneous medium of constant refractive index. In this setting we were able
to describe the spectral properties of the far field operator precisely. As a consequence, we
could easily compute the indicator functions of the shape of the inhomogeneity provided by the
sampling methods. We then conducted some numerical experiments allowing to compare the
efficiency of these indicator functions and more particularly their respective behavior across the
boundary of the inhomogeneity. Since in this setting, the TEs correspond to zeros of known
quantities which involve Bessel functions, their values can be approximated as accurately as
desired. Consequently, we were able to perform some numerical experiments that test the
reliability of the GLSM for the determination of TEs from far field data. We tested both the
precision of the method with respect to the noise level on the far field data and the precision
with respect to the size of the scattering matrix (which depends on the number of receivers used
to collect the far field data). These few numerical results are a first step before a theoretical
analysis of this issue which seems challenging but also increasingly important for the use of TEs
in solving inverse problems [22, 31, 63, 66, 32]. Estimates on the error made while approximating
TEs can be useful for instance to choose an optimal sampling of frequencies when collecting the
data or to estimate the error being made when using TEs in inversion algorithms. We also
gave a lower bound on the rate of convergence of the sequence of the regularized solutions of
the far field equation provided by the GLSM to the predicted limit (which is the solution of a
transmission problem). This result is important for a deeper understanding of the DLSM which
relies on approximations of ITP solutions.

In chapters 2 and 4, we respectively considered the problem of detecting emergence of sound-
hard cracks or sound-hard obstacles in some non-homogeneous background. We extended the
results of the DLSM which requires two different factorization of the far field operator. The
study of each type of defects, cracks or obstacles, have presented some particularities. Indeed
the validity of the DLSM for the detection of a crack requires the crack to be defined as a
part of the boundary of a bounded domain with analytic boundary. For an obstacle Ω, only a
Lipschitz regularity is required for its boundary, but in counterpart the wavenumber is required
to be different from Neumann eigenvalues for the Laplace operator in Ω. We notice that the
established factorizations of the far field operator have also extended the use of FM to image
isotropic inhomogeneities containing sound-hard cracks or obstacles. In view of using FM in
practical situations, it would be interesting to study more complex backgrounds, by consider-
ing for instance inhomogeneous media containing inclusions with different boundary conditions
altogether.

In chapter 3, we investigated the interior transmission problem for istropic inhomogeneities
containing sound-hard cracks. Provided that the refractive index satisfies n > 1, we showed the
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existence of infinitely many real TEs with no finite accumulation point. We also derived Faber-
Krahn type inequalities for the TEs. It could be interesting to understand the behaviour of the
TEs with respect to the size of the crack or its distance to the boundary of the inhomogeneity
in view of using TEs in crack monitoring.

In chapter 5, we studied the interior transmission problem for isotropic inhomogeneities
containing sound-hard inclusions. We relied on the properties of the Dirichlet-to-Neumann
operator to prove that the set of transmission eigenvalues is at most discrete, provided that the
sign contrast is fixed in a vicinity of the boundary of the support of the medium. In order to
prove the existence of TEs, we developed a variational formulation similar to the one used in [33]
and which is based on a fourth order equation. From the weak formulation arose many technical
difficulties that we believe are independent from the existence of TEs. For instance the spectrum
of the weak problem includes all Neumann eigenvalues for the Laplace operator in the support
of the inclusion. Furthermore, the weak and the strong formulations cannot be proved to be
equivalent when k corresponds to a Neumann eigenvalue. Therefore, proving the existence of TEs
with the approach used in [33] necessitates to be more cautious by ensuring that the exhibited
elements of the weak spectrum do not correspond to the Neumann eigenvalues. Our various
efforts to answer this question were not successful. A first obvious theoretical perspective is to
answer this open question. One can also ask the question of existence of complex transmission
eigenvalues for which following the approach by Robbiano [112] would be a natural way to
investigate.

In chapter 6, we proposed two different techniques to locally quantify small crack aggregates
embedded in some homogeneous background from far field data. Our results are valid for ei-
ther sound-hard cracks, sound-soft cracks or cracks with impedance boundary conditions. The
first method we proposed rely on transmission eigenvalues with artificial backgrounds. More
precisely, we made use of an artificial impenetrable obstacle localized in a chosen bounded area
Ω inside the probed domain. We show that the Relative Transmission Eigenvalues which corre-
spond to the spectrum of a PDE defined on Ω, namely the Relative Transmission Problem, can
be computed with the GLSM. Since the solutions of RTP satisfy some boundary conditions on
the crack, the RTEs carry information on the latter. More precisely, we show the possibility to
deduce the presence of the crack in Ω by comparing the computed RTEs to the spectrum of the
Laplace operator in Ω. Furthermore, we showed that the difference between these two spectra
are monotonous with respect to the crack size inside Ω for the inclusion order. The latter justifies
the possibility to define and to quantify a crack density in Ω. Finally, a quantification of the
crack density is obtained at each point by repeating this process for various positions of Ω along
the probed area. However, this method requires a large amount of data and numerical compu-
tations. To circumvent these drawbacks, we propose an alternative approach using far field data
at fixed frequency. The second method we propose consists in comparing the solutions of the
two mentioned PDEs instead of comparing their spectrum. The computation of the solution of
RTP is also provided by the GLSM and we prove that its difference with the solution of the
Helmholtz equation allows to characterize the presence of the crack in Ω. Hence the crack can
be identified by varying the position of Ω. This alternative method is more attractive because it
requires less computations than the first one. Nevertheless, there is no theoretical guarantee for
this method provides a quantification of the crack density. Providing the necessary theoretical
elements to justify the use of the second method to quantify crack density would be desirable.
On the numerical side, it would be informative to carry out extensive numerical experiments on
optimal choices and interplay between the different parameters of the method: size of the probing
artificial object and sampling size in space (related to the experiment frequency), number of the
transmission eigenvalues used in the criterion evaluation, other ways to compare the numerical
spectra for crack free obstacle and the spectra computed from the data, etc. Analytical studies
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may be helpful for the cases where cracks are replaced with circular Neumann obstacles. One
can also explore the use of different backgrounds and experiment the methods on more realistic
configurations.

In addition to the possible perspectives mentioned above, we propose a few others that are a bit
more general:

• Concerning the determination of transmission eigenvalues for cracks in artificial media, it
would also be interesting to explore other methods, like the inside-outside duality. This
method has been extended to the case where the artificial background is made dielectric
media [7]. The cases where the artificial background is made of obstacles is still open.

• Extend the methodologies to time dependent data with limited number of sources/receivers
is another interesting perspective. For a multifrequency framework, combining the use of
the frequencies in a multi-resolution approach is a desirable path to follow in order to
perform better in terms of inversion cost. Defining this type of methodology requires a
better understanding of the parameters in the previous point.

• Finally, a natural extension of our work would be to study other models (electromagnetism,
elastodynamics) and consider realistic applicative settings.
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Titre : Sur l’utilisation de méthodes d’échantillonnages et des signatures spectrales pour la résolution de
problèmes inverses en diffraction

Mots clés : analyse spectrale, problèmes inverses, analyse fonctionnelle, analyse numérique, diffraction

Résumé : Cette thèse est une contribution aux
problèmes inverses en diffraction acoustique. Nous
nous intéressons plus précisément au contrôle non
destructif de matériaux hétérogènes tels que les
matériaux composites. Surveiller l’état de ce type
de matériaux en milieu industriel présente un en-
jeu majeur. Cependant leurs structures complexes
rendent cette tâche difficile. Les méthodes dites
d’échantillonnage semblent très prometteuses pour
répondre à cette problématique. Nous développons
ces techniques pour détecter l’apparition de défauts
à partir de données de champs lointains. Les défauts
considérés sont des obstacles impénétrables de type
Neumann. Nous en distinguons deux catégories qui
nécessitent chacune un traitement particulier : les fis-
sures et les obstacles d’intérieur non vide.
Grâce à deux factorisations complémentaires de
l’opérateur de champ lointain que nous établissons,
nous montrons qu’il est possible d’approcher la so-
lution du Problème de Transmission Intérieur (PTI)
à partir des données. Le PTI est un système
d’équations différentielles qui met en jeu les pa-
ramètres physiques du matériau sondé. Nous mon-

trons qu’il est alors possible de détecter une anoma-
lie en comparant les solutions de deux PTI différents,
l’un associé aux mesures faites avant l’apparition du
défaut et l’autre associé aux mesures faites après. La
validité de la méthode décrite nécessite d’éviter des
fréquences particulières correspondant au spectre du
PTI pour lequel ce problème est mal posé. Nous
montrons que ce spectre est un ensemble infini,
dénombrable et sans point fini d’accumulation.
Dans le dernier chapitre, nous utilisons la notion
récente de milieux artificiels pour imager des réseaux
de fissures au sein d’un milieu homogène. Cette ap-
proche permet le design du problème de transmission
intérieur par le choix du milieu artificiel, par exemple
composé d’obstacle impénétrables. Le spectre as-
socié est alors sensible à la présence de fissures à
l’intérieur de l’obstacle artificiel. Ceci permet de quan-
tifier localement la densité de fissure. Cependant, le
calcul du spectre nécessite des données pour un in-
tervalle de fréquence et est très coûteux en temps
de calcul. Nous proposons une alternative n’utilisant
qu’une seule fréquence et qui consiste à travailler
avec les solutions du PTI plutôt qu’avec son spectre.

Title : On the use of sampling methods and spectral signatures for the resolution of inverse scattering problems

Keywords : spectral analysis, inverse problems, functional analysis, numerical analysis, scattering theory

Abstract : This thesis is a contribution to inverse
scattering theory. We are more specifically interested
in the non-destructive testing of heterogeneous ma-
terials such as composite materials by using acous-
tic waves. Monitoring this type of materials in an in-
dustrial environment is of major importance, but their
complex structure makes this task difficult. The so-
called sampling methods seem very promising to ad-
dress this issue. We develop these techniques to de-
tect the appearance of defects from far field data. The
defects considered are impenetrable Neumann obs-
tacles. We distinguish two categories of them, each
requiring a specific treatment: cracks and obstacles
with non empty interior.
Thanks to the two complementary factorizations of the
far field operator that we establish, we show that it is
possible to approach the solution of the Interior Trans-
mission Problem (ITP) from the data. The ITP is a sys-
tem of partial differential equations that takes into ac-
count the physical parameters of the material being
surveyed. We show that it is then possible to detect
an anomaly by comparing the solutions of two dif-

ferent ITPs, one associated with measurements made
before the defect appeared and the other one asso-
ciated with measurements made after. The validity of
the described method requires avoiding particular fre-
quencies, which are the elements of the ITP spectrum
for which this problem is not well posed. We show that
this spectrum is an infinite set, countable and without
finite accumulation points.
In the last chapter, we use the recent notion of artifi-
cial backgrounds to image crack networks embedded
in a homogeneous background. This approach allows
us to design a transmission problem with the choice of
the artificial background, for instance made of an obs-
tacle. The associated spectrum is then sensitive to the
presence of cracks inside the artificial obstacle. This
allows to quantify locally the crack density. However,
the computation of the spectrum requires data at se-
veral frequencies and is expensive in terms of calcu-
lations. We propose an alternative method using only
data at fixed frequency and which consists in working
with the solutions of the ITP instead of it’s spectrum.
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